Natalia Soledad Amerio, Marcela Paola Barengo, Gustavo Angel Bich, Pedro Dario Zapata, Laura Lidia Villalba, María Lorena Castrillo
{"title":"利用Koningiopsis LBM116生物防治植物病原真菌的酶促策略","authors":"Natalia Soledad Amerio, Marcela Paola Barengo, Gustavo Angel Bich, Pedro Dario Zapata, Laura Lidia Villalba, María Lorena Castrillo","doi":"10.1111/1758-2229.70122","DOIUrl":null,"url":null,"abstract":"<p>The growing demand for sustainable alternatives to chemical fungicides has driven the development of microbial-based biocontrol strategies. In this study, the native strain <i>Trichoderma koningiopsis</i> LBM116 (Misiones, Argentina) was optimised for the production of mycolytic enzymes (chitinases, β-1,3-glucanases, and proteases) using factorial and response surface experimental designs. Enzyme secretion was increased by more than 250% compared to initial conditions by selecting specific carbon and nitrogen sources and adjusting inoculum and pH parameters. The optimised enzyme formulation improved lettuce seed germination to 86.66% in the presence of the phytopathogen <i>Fusarium</i> sp., under controlled conditions. In seedling trials, it also reduced disease severity and improved growth parameters. These results confirm the dual effect of the enzyme formulation, acting as a biocontrol agent and plant growth promoter. This work highlights the potential of enzyme formulations derived from <i>T. koningiopsis</i> LBM116 as an effective, low-cost, and sustainable alternative for managing phytopathogens in agriculture.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70122","citationCount":"0","resultStr":"{\"title\":\"Enzymatic Strategies for Biocontrolling Phytopathogenic Fungi Using Trichoderma Koningiopsis LBM116\",\"authors\":\"Natalia Soledad Amerio, Marcela Paola Barengo, Gustavo Angel Bich, Pedro Dario Zapata, Laura Lidia Villalba, María Lorena Castrillo\",\"doi\":\"10.1111/1758-2229.70122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The growing demand for sustainable alternatives to chemical fungicides has driven the development of microbial-based biocontrol strategies. In this study, the native strain <i>Trichoderma koningiopsis</i> LBM116 (Misiones, Argentina) was optimised for the production of mycolytic enzymes (chitinases, β-1,3-glucanases, and proteases) using factorial and response surface experimental designs. Enzyme secretion was increased by more than 250% compared to initial conditions by selecting specific carbon and nitrogen sources and adjusting inoculum and pH parameters. The optimised enzyme formulation improved lettuce seed germination to 86.66% in the presence of the phytopathogen <i>Fusarium</i> sp., under controlled conditions. In seedling trials, it also reduced disease severity and improved growth parameters. These results confirm the dual effect of the enzyme formulation, acting as a biocontrol agent and plant growth promoter. This work highlights the potential of enzyme formulations derived from <i>T. koningiopsis</i> LBM116 as an effective, low-cost, and sustainable alternative for managing phytopathogens in agriculture.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70122\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70122\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70122","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Enzymatic Strategies for Biocontrolling Phytopathogenic Fungi Using Trichoderma Koningiopsis LBM116
The growing demand for sustainable alternatives to chemical fungicides has driven the development of microbial-based biocontrol strategies. In this study, the native strain Trichoderma koningiopsis LBM116 (Misiones, Argentina) was optimised for the production of mycolytic enzymes (chitinases, β-1,3-glucanases, and proteases) using factorial and response surface experimental designs. Enzyme secretion was increased by more than 250% compared to initial conditions by selecting specific carbon and nitrogen sources and adjusting inoculum and pH parameters. The optimised enzyme formulation improved lettuce seed germination to 86.66% in the presence of the phytopathogen Fusarium sp., under controlled conditions. In seedling trials, it also reduced disease severity and improved growth parameters. These results confirm the dual effect of the enzyme formulation, acting as a biocontrol agent and plant growth promoter. This work highlights the potential of enzyme formulations derived from T. koningiopsis LBM116 as an effective, low-cost, and sustainable alternative for managing phytopathogens in agriculture.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.