双机制过渡控制大深地震破裂发育

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2025-06-12 DOI:10.1029/2025AV001701
Zhe Jia, Wenyuan Fan, Wei Mao, Peter M. Shearer, Dave A. May
{"title":"双机制过渡控制大深地震破裂发育","authors":"Zhe Jia,&nbsp;Wenyuan Fan,&nbsp;Wei Mao,&nbsp;Peter M. Shearer,&nbsp;Dave A. May","doi":"10.1029/2025AV001701","DOIUrl":null,"url":null,"abstract":"<p>Deep earthquakes at depths below 500 km are under prohibitive pressure and temperature conditions for brittle failure. Individual events show diverse rupture behaviors and a coherent mechanism to explain their rupture nucleation, propagation, and characteristics has yet to be established. We systematically resolve the rupture processes of 40 large <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>&gt;</mo>\n <mn>7</mn>\n </mrow>\n <annotation> $M &gt; 7$</annotation>\n </semantics></math> deep earthquakes from 1990 to 2023 and compare the rupture details to their local metastable olivine wedge (MOW) structures informed from thermo-mechanical simulations in seven subduction zones. Our results suggest that these events likely initiate from metastable olivine transformations within the cold slab core and rupture beyond the MOW due to sustained weakening from molten rock at the rupture tip. Over half of the <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>&gt;</mo>\n <mn>7</mn>\n </mrow>\n <annotation> $M &gt; 7$</annotation>\n </semantics></math> earthquakes likely rupture beyond the MOW boundary and are controlled by both mechanisms. Rupturing outside the MOW boundary leads to greater moment release, increased geometric complexity, and a reduction in rupture length, causing greater stress drops.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 3","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001701","citationCount":"0","resultStr":"{\"title\":\"Dual Mechanism Transition Controls Rupture Development of Large Deep Earthquakes\",\"authors\":\"Zhe Jia,&nbsp;Wenyuan Fan,&nbsp;Wei Mao,&nbsp;Peter M. Shearer,&nbsp;Dave A. May\",\"doi\":\"10.1029/2025AV001701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep earthquakes at depths below 500 km are under prohibitive pressure and temperature conditions for brittle failure. Individual events show diverse rupture behaviors and a coherent mechanism to explain their rupture nucleation, propagation, and characteristics has yet to be established. We systematically resolve the rupture processes of 40 large <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>&gt;</mo>\\n <mn>7</mn>\\n </mrow>\\n <annotation> $M &gt; 7$</annotation>\\n </semantics></math> deep earthquakes from 1990 to 2023 and compare the rupture details to their local metastable olivine wedge (MOW) structures informed from thermo-mechanical simulations in seven subduction zones. Our results suggest that these events likely initiate from metastable olivine transformations within the cold slab core and rupture beyond the MOW due to sustained weakening from molten rock at the rupture tip. Over half of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>&gt;</mo>\\n <mn>7</mn>\\n </mrow>\\n <annotation> $M &gt; 7$</annotation>\\n </semantics></math> earthquakes likely rupture beyond the MOW boundary and are controlled by both mechanisms. Rupturing outside the MOW boundary leads to greater moment release, increased geometric complexity, and a reduction in rupture length, causing greater stress drops.</p>\",\"PeriodicalId\":100067,\"journal\":{\"name\":\"AGU Advances\",\"volume\":\"6 3\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001701\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AGU Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2025AV001701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025AV001701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

深度在500公里以下的深地震处于脆性破坏所禁止的压力和温度条件下。单个事件表现出不同的破裂行为,并且解释其破裂成核、扩展和特征的连贯机制尚未建立。系统求解了40台大型机床的断裂过程;7 $M >;研究了1990年至2023年的7次深地震,并将破裂细节与7个俯冲带的局部亚稳橄榄石楔(MOW)结构进行了比较。我们的研究结果表明,这些事件可能起源于冷板核心内的亚稳橄榄石转变,并且由于破裂尖端熔融岩石的持续削弱而在MOW之外破裂。超过一半的m>;7 $M >;7美元的地震可能在MOW边界之外破裂,并受到两种机制的控制。在MOW边界外破裂会导致更大的力矩释放,增加几何复杂性,减少破裂长度,导致更大的应力降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Mechanism Transition Controls Rupture Development of Large Deep Earthquakes

Deep earthquakes at depths below 500 km are under prohibitive pressure and temperature conditions for brittle failure. Individual events show diverse rupture behaviors and a coherent mechanism to explain their rupture nucleation, propagation, and characteristics has yet to be established. We systematically resolve the rupture processes of 40 large M > 7 $M > 7$ deep earthquakes from 1990 to 2023 and compare the rupture details to their local metastable olivine wedge (MOW) structures informed from thermo-mechanical simulations in seven subduction zones. Our results suggest that these events likely initiate from metastable olivine transformations within the cold slab core and rupture beyond the MOW due to sustained weakening from molten rock at the rupture tip. Over half of the M > 7 $M > 7$ earthquakes likely rupture beyond the MOW boundary and are controlled by both mechanisms. Rupturing outside the MOW boundary leads to greater moment release, increased geometric complexity, and a reduction in rupture length, causing greater stress drops.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信