通过控制功能化路径调制适体碳纳米管场效应晶体管生物传感器的信号生成

Haosen Miao, Gririraj Manoharan, Ahran Lim, Peter Mirau, Jorge L. Chávez, Chang-Seuk Lee, Matteo Palma
{"title":"通过控制功能化路径调制适体碳纳米管场效应晶体管生物传感器的信号生成","authors":"Haosen Miao,&nbsp;Gririraj Manoharan,&nbsp;Ahran Lim,&nbsp;Peter Mirau,&nbsp;Jorge L. Chávez,&nbsp;Chang-Seuk Lee,&nbsp;Matteo Palma","doi":"10.1002/adsr.70002","DOIUrl":null,"url":null,"abstract":"<p>The identification of biomarkers is key to the early detection of physiological dysfunction. Nanoscale field-effect transistors (FETs) modified with target-specific receptors enable direct target sensing, offering enhanced sensitivity due to nanoscale channel confinement. In this regard, single-walled carbon nanotubes (SWCNTs) have emerged as strong candidates for the development of transistor-based biosensors. Understanding the structural parameters that affect sensing performance in such nanoscale electrical detection platforms is essential for their reliable and controllable use. Here, this is investigated that how different assembly strategies employed in the construction of nanoscale aptamer-based SWCNT-FET biosensors can dramatically affect their signal generation, with conductance increasing or decreasing for the same aptamer-cortisol recognition event. a cortisol-binding DNA aptamer exhibiting well-characterized conformational behavior is employed, as a model receptor to explore the influence of different surface functionalization strategies on SWCNT-based biosensors performance. Through combined electrical and optical characterization, this is elucidated that how aptamer conformation governs local electrostatic changes within the Debye length, which in turn modulates the electrostatic gating of the devices. This work offers insight into effective design strategies for the construction of biosensors functionalized with electrostatically active molecular receptors.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"4 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.70002","citationCount":"0","resultStr":"{\"title\":\"Modulating Signal Generation in Aptamer-Based CNT-FET Biosensors by Controlling the Functionalization Route\",\"authors\":\"Haosen Miao,&nbsp;Gririraj Manoharan,&nbsp;Ahran Lim,&nbsp;Peter Mirau,&nbsp;Jorge L. Chávez,&nbsp;Chang-Seuk Lee,&nbsp;Matteo Palma\",\"doi\":\"10.1002/adsr.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The identification of biomarkers is key to the early detection of physiological dysfunction. Nanoscale field-effect transistors (FETs) modified with target-specific receptors enable direct target sensing, offering enhanced sensitivity due to nanoscale channel confinement. In this regard, single-walled carbon nanotubes (SWCNTs) have emerged as strong candidates for the development of transistor-based biosensors. Understanding the structural parameters that affect sensing performance in such nanoscale electrical detection platforms is essential for their reliable and controllable use. Here, this is investigated that how different assembly strategies employed in the construction of nanoscale aptamer-based SWCNT-FET biosensors can dramatically affect their signal generation, with conductance increasing or decreasing for the same aptamer-cortisol recognition event. a cortisol-binding DNA aptamer exhibiting well-characterized conformational behavior is employed, as a model receptor to explore the influence of different surface functionalization strategies on SWCNT-based biosensors performance. Through combined electrical and optical characterization, this is elucidated that how aptamer conformation governs local electrostatic changes within the Debye length, which in turn modulates the electrostatic gating of the devices. This work offers insight into effective design strategies for the construction of biosensors functionalized with electrostatically active molecular receptors.</p>\",\"PeriodicalId\":100037,\"journal\":{\"name\":\"Advanced Sensor Research\",\"volume\":\"4 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.70002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsr.70002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.70002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物标志物的识别是早期发现生理功能障碍的关键。纳米级场效应晶体管(fet)与目标特异性受体修饰,使直接目标传感,提供提高灵敏度,由于纳米级通道限制。在这方面,单壁碳纳米管(SWCNTs)已成为开发基于晶体管的生物传感器的有力候选材料。了解影响这种纳米级电检测平台传感性能的结构参数对于其可靠和可控的使用至关重要。本文研究了不同的组装策略如何在构建纳米尺度的基于适配体的swcnts - fet生物传感器时显著影响其信号的产生,对于相同的适配体-皮质醇识别事件,电导会增加或减少。采用具有良好构象行为特征的皮质醇结合DNA适体作为模型受体,探索不同表面功能化策略对基于swcnts的生物传感器性能的影响。通过结合电学和光学表征,阐明了适体构象如何控制德拜长度内的局部静电变化,进而调节器件的静电门控。这项工作为构建具有静电活性分子受体的生物传感器提供了有效的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulating Signal Generation in Aptamer-Based CNT-FET Biosensors by Controlling the Functionalization Route

The identification of biomarkers is key to the early detection of physiological dysfunction. Nanoscale field-effect transistors (FETs) modified with target-specific receptors enable direct target sensing, offering enhanced sensitivity due to nanoscale channel confinement. In this regard, single-walled carbon nanotubes (SWCNTs) have emerged as strong candidates for the development of transistor-based biosensors. Understanding the structural parameters that affect sensing performance in such nanoscale electrical detection platforms is essential for their reliable and controllable use. Here, this is investigated that how different assembly strategies employed in the construction of nanoscale aptamer-based SWCNT-FET biosensors can dramatically affect their signal generation, with conductance increasing or decreasing for the same aptamer-cortisol recognition event. a cortisol-binding DNA aptamer exhibiting well-characterized conformational behavior is employed, as a model receptor to explore the influence of different surface functionalization strategies on SWCNT-based biosensors performance. Through combined electrical and optical characterization, this is elucidated that how aptamer conformation governs local electrostatic changes within the Debye length, which in turn modulates the electrostatic gating of the devices. This work offers insight into effective design strategies for the construction of biosensors functionalized with electrostatically active molecular receptors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信