DepthFormer:深度增强的变压器网络,用于从漫游车图像中提取火星表面的语义分割

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Yuan Ma, Zhaojin Li, Bo Wu, Ran Duan
{"title":"DepthFormer:深度增强的变压器网络,用于从漫游车图像中提取火星表面的语义分割","authors":"Yuan Ma,&nbsp;Zhaojin Li,&nbsp;Bo Wu,&nbsp;Ran Duan","doi":"10.1029/2024EA003812","DOIUrl":null,"url":null,"abstract":"<p>The Martian surface, with its diverse landforms that reflect the planet's evolution, has attracted increasing scientific interest. While extensive data is needed for interpretation, identifying landform types is crucial. This semantic information reveals underlying features and patterns, offering valuable scientific insights. Advanced deep learning techniques, particularly Transformers, can enhance semantic segmentation and image interpretation, deepening our understanding of Martian surface features. However, current publicly available neural networks are trained in the context of Earth, rendering the direct use of the Martian surface impossible. Besides, the Martian surface features poorly texture and homogenous scenarios, leading to difficulty in segmenting the images into favorable semantic classes. In this paper, an innovative depth-enhanced Transformer network—DepthFormer is developed for the semantic segmentation of Martian surface images. The stereo images acquired by the Zhurong rover along its traverse are used for training and testing the DepthFormer network. Different from regular deep-learning networks only dealing with three bands (red, green and blue) of images, the DepthFormer incorporates the depth information available from the stereo images as the fourth band in the network to enable more accurate segmentation of various surface features. Experimental evaluations and comparisons using synthesized and actual Mars image data sets reveal that the DepthFormer achieves an average accuracy of 98%, superior to that of conventional segmentation methods. The proposed method is the first deep-learning model incorporating depth information for accurate semantic segmentation of the Martian surface, which is of significance for future Mars exploration missions and scientific studies.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 6","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003812","citationCount":"0","resultStr":"{\"title\":\"DepthFormer: Depth-Enhanced Transformer Network for Semantic Segmentation of the Martian Surface From Rover Images\",\"authors\":\"Yuan Ma,&nbsp;Zhaojin Li,&nbsp;Bo Wu,&nbsp;Ran Duan\",\"doi\":\"10.1029/2024EA003812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Martian surface, with its diverse landforms that reflect the planet's evolution, has attracted increasing scientific interest. While extensive data is needed for interpretation, identifying landform types is crucial. This semantic information reveals underlying features and patterns, offering valuable scientific insights. Advanced deep learning techniques, particularly Transformers, can enhance semantic segmentation and image interpretation, deepening our understanding of Martian surface features. However, current publicly available neural networks are trained in the context of Earth, rendering the direct use of the Martian surface impossible. Besides, the Martian surface features poorly texture and homogenous scenarios, leading to difficulty in segmenting the images into favorable semantic classes. In this paper, an innovative depth-enhanced Transformer network—DepthFormer is developed for the semantic segmentation of Martian surface images. The stereo images acquired by the Zhurong rover along its traverse are used for training and testing the DepthFormer network. Different from regular deep-learning networks only dealing with three bands (red, green and blue) of images, the DepthFormer incorporates the depth information available from the stereo images as the fourth band in the network to enable more accurate segmentation of various surface features. Experimental evaluations and comparisons using synthesized and actual Mars image data sets reveal that the DepthFormer achieves an average accuracy of 98%, superior to that of conventional segmentation methods. The proposed method is the first deep-learning model incorporating depth information for accurate semantic segmentation of the Martian surface, which is of significance for future Mars exploration missions and scientific studies.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003812\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003812\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003812","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

火星表面的多样地貌反映了火星的演化过程,这吸引了越来越多的科学家的兴趣。虽然解释需要大量的数据,但确定地貌类型至关重要。这些语义信息揭示了潜在的特征和模式,提供了有价值的科学见解。先进的深度学习技术,特别是变形金刚,可以增强语义分割和图像解释,加深我们对火星表面特征的理解。然而,目前公开的神经网络是在地球环境下训练的,这使得直接使用火星表面是不可能的。此外,火星表面纹理差,场景同质,导致难以将图像分割成有利的语义类。本文针对火星表面图像的语义分割,开发了一种创新的深度增强Transformer网络——depthformer。朱荣月测车沿其轨迹获取的立体图像用于训练和测试DepthFormer网络。与常规深度学习网络只处理图像的红、绿、蓝三个波段不同,DepthFormer将立体图像的深度信息作为网络的第四个波段,可以更准确地分割各种表面特征。通过对合成和实际火星图像数据集的实验评估和比较表明,DepthFormer的平均分割准确率达到98%,优于传统的分割方法。该方法是首个结合深度信息的深度学习模型,可用于火星表面的精确语义分割,对未来的火星探测任务和科学研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DepthFormer: Depth-Enhanced Transformer Network for Semantic Segmentation of the Martian Surface From Rover Images

The Martian surface, with its diverse landforms that reflect the planet's evolution, has attracted increasing scientific interest. While extensive data is needed for interpretation, identifying landform types is crucial. This semantic information reveals underlying features and patterns, offering valuable scientific insights. Advanced deep learning techniques, particularly Transformers, can enhance semantic segmentation and image interpretation, deepening our understanding of Martian surface features. However, current publicly available neural networks are trained in the context of Earth, rendering the direct use of the Martian surface impossible. Besides, the Martian surface features poorly texture and homogenous scenarios, leading to difficulty in segmenting the images into favorable semantic classes. In this paper, an innovative depth-enhanced Transformer network—DepthFormer is developed for the semantic segmentation of Martian surface images. The stereo images acquired by the Zhurong rover along its traverse are used for training and testing the DepthFormer network. Different from regular deep-learning networks only dealing with three bands (red, green and blue) of images, the DepthFormer incorporates the depth information available from the stereo images as the fourth band in the network to enable more accurate segmentation of various surface features. Experimental evaluations and comparisons using synthesized and actual Mars image data sets reveal that the DepthFormer achieves an average accuracy of 98%, superior to that of conventional segmentation methods. The proposed method is the first deep-learning model incorporating depth information for accurate semantic segmentation of the Martian surface, which is of significance for future Mars exploration missions and scientific studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信