基于STM32的电池状态估计自适应扩展卡尔曼滤波

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
António Barros;Edoardo Peretti;Davide Fabroni;Diego Carrera;Pasqualina Fragneto;Giacomo Boracchi
{"title":"基于STM32的电池状态估计自适应扩展卡尔曼滤波","authors":"António Barros;Edoardo Peretti;Davide Fabroni;Diego Carrera;Pasqualina Fragneto;Giacomo Boracchi","doi":"10.1109/LES.2024.3489352","DOIUrl":null,"url":null,"abstract":"Accurate and computationally light algorithms for estimating the state of charge (SoC) of a battery’s cells are crucial for effective battery management on embedded systems. In this letter, we propose an adaptive extended Kalman filter (AEKF) for SoC estimation using a covariance adaptation technique based on maximum likelihood estimation—a novelty in this domain. Furthermore, we tune a key design parameter—the estimation window size—to obtain an optimal memory-performance tradeoff, and experimentally demonstrate our solution achieves superior estimation accuracy with respect to existing alternative methods. Finally, we present a fully custom implementation of the AEKF for a general-purpose low-cost STM32 microcontroller, showing it can be deployed with minimal computational requirements adequate for real-world usage.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"17 3","pages":"160-163"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Extended Kalman Filtering for Battery State of Charge Estimation on STM32\",\"authors\":\"António Barros;Edoardo Peretti;Davide Fabroni;Diego Carrera;Pasqualina Fragneto;Giacomo Boracchi\",\"doi\":\"10.1109/LES.2024.3489352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and computationally light algorithms for estimating the state of charge (SoC) of a battery’s cells are crucial for effective battery management on embedded systems. In this letter, we propose an adaptive extended Kalman filter (AEKF) for SoC estimation using a covariance adaptation technique based on maximum likelihood estimation—a novelty in this domain. Furthermore, we tune a key design parameter—the estimation window size—to obtain an optimal memory-performance tradeoff, and experimentally demonstrate our solution achieves superior estimation accuracy with respect to existing alternative methods. Finally, we present a fully custom implementation of the AEKF for a general-purpose low-cost STM32 microcontroller, showing it can be deployed with minimal computational requirements adequate for real-world usage.\",\"PeriodicalId\":56143,\"journal\":{\"name\":\"IEEE Embedded Systems Letters\",\"volume\":\"17 3\",\"pages\":\"160-163\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Embedded Systems Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740057/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740057/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

准确且计算量小的电池电池荷电状态(SoC)估计算法对于嵌入式系统中有效的电池管理至关重要。在这封信中,我们提出了一种自适应扩展卡尔曼滤波器(AEKF),用于SoC估计,使用基于最大似然估计的协方差自适应技术-这是该领域的一种新颖技术。此外,我们调整了一个关键的设计参数-估计窗口大小-以获得最佳的内存性能权衡,并通过实验证明我们的解决方案相对于现有的替代方法实现了更高的估计精度。最后,我们为通用低成本STM32微控制器提供了一个完全自定义的AEKF实现,表明它可以以最小的计算需求部署,足以满足实际使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Extended Kalman Filtering for Battery State of Charge Estimation on STM32
Accurate and computationally light algorithms for estimating the state of charge (SoC) of a battery’s cells are crucial for effective battery management on embedded systems. In this letter, we propose an adaptive extended Kalman filter (AEKF) for SoC estimation using a covariance adaptation technique based on maximum likelihood estimation—a novelty in this domain. Furthermore, we tune a key design parameter—the estimation window size—to obtain an optimal memory-performance tradeoff, and experimentally demonstrate our solution achieves superior estimation accuracy with respect to existing alternative methods. Finally, we present a fully custom implementation of the AEKF for a general-purpose low-cost STM32 microcontroller, showing it can be deployed with minimal computational requirements adequate for real-world usage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信