MCvD系统中新型减少isi的单纠错码设计

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Tamoghno Nath;Krishna Gopal Benerjee;Adrish Banerjee
{"title":"MCvD系统中新型减少isi的单纠错码设计","authors":"Tamoghno Nath;Krishna Gopal Benerjee;Adrish Banerjee","doi":"10.1109/TMBMC.2025.3544137","DOIUrl":null,"url":null,"abstract":"Intersymbol Interference (ISI) has a detrimental impact on any Molecular Communication via Diffusion (MCvD) system. Also, the receiver noise can severely degrade the MCvD channel performance. However, the channel codes proposed in the literature for the MCvD system have only addressed one of these two challenges independently. In this paper, we have designed single Error Correcting Codes in an MCvD system with channel memory and noise. We have also provided encoding and decoding algorithms for the proposed codes, which are simple to follow despite having a non-linear code construction. Finally, through simulation results, we show that the proposed single ECCs, for given code parameters, perform better than the existing codes in the literature in combating the effect of ISI in the channel and improving the average Bit Error Rate (BER) performance in a noisy channel.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 2","pages":"228-233"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Designing Novel ISI-Reducing Single Error Correcting Codes in an MCvD System\",\"authors\":\"Tamoghno Nath;Krishna Gopal Benerjee;Adrish Banerjee\",\"doi\":\"10.1109/TMBMC.2025.3544137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intersymbol Interference (ISI) has a detrimental impact on any Molecular Communication via Diffusion (MCvD) system. Also, the receiver noise can severely degrade the MCvD channel performance. However, the channel codes proposed in the literature for the MCvD system have only addressed one of these two challenges independently. In this paper, we have designed single Error Correcting Codes in an MCvD system with channel memory and noise. We have also provided encoding and decoding algorithms for the proposed codes, which are simple to follow despite having a non-linear code construction. Finally, through simulation results, we show that the proposed single ECCs, for given code parameters, perform better than the existing codes in the literature in combating the effect of ISI in the channel and improving the average Bit Error Rate (BER) performance in a noisy channel.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":\"11 2\",\"pages\":\"228-233\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10896763/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10896763/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

符号间干扰(ISI)对任何分子扩散通信(MCvD)系统都有不利影响。此外,接收机噪声会严重降低MCvD信道的性能。然而,文献中提出的用于MCvD系统的信道代码仅独立解决了这两个挑战中的一个。在本文中,我们设计了一个具有信道存储和噪声的MCvD系统中的单纠错码。我们还为所提出的代码提供了编码和解码算法,尽管具有非线性代码结构,但这些算法易于遵循。最后,通过仿真结果表明,在给定的编码参数下,所提出的单ecc在对抗信道中ISI的影响和提高噪声信道中的平均误码率(BER)性能方面优于文献中现有的编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Designing Novel ISI-Reducing Single Error Correcting Codes in an MCvD System
Intersymbol Interference (ISI) has a detrimental impact on any Molecular Communication via Diffusion (MCvD) system. Also, the receiver noise can severely degrade the MCvD channel performance. However, the channel codes proposed in the literature for the MCvD system have only addressed one of these two challenges independently. In this paper, we have designed single Error Correcting Codes in an MCvD system with channel memory and noise. We have also provided encoding and decoding algorithms for the proposed codes, which are simple to follow despite having a non-linear code construction. Finally, through simulation results, we show that the proposed single ECCs, for given code parameters, perform better than the existing codes in the literature in combating the effect of ISI in the channel and improving the average Bit Error Rate (BER) performance in a noisy channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信