多细胞分子通信系统的通用仿真平台

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Takanori Saiki;Shohei Imanaka;Shouhei Kobayashi;Tadashi Nakano
{"title":"多细胞分子通信系统的通用仿真平台","authors":"Takanori Saiki;Shohei Imanaka;Shouhei Kobayashi;Tadashi Nakano","doi":"10.1109/TMBMC.2025.3544141","DOIUrl":null,"url":null,"abstract":"This paper presents the design, implementation, and evaluation of a general-purpose simulation platform for multicellular molecular communication systems. Built on an agent-based model, the platform offers flexibility to simulate diverse multicellular systems, such as cancer spheroids and vascular-like networks. It incorporates efficient algorithms, including Cell-List and Barnes-Hut, for calculating cell-cell interaction forces and supports dynamic behaviors such as cell division, growth, and death. The platform’s capabilities are demonstrated through use cases, highlighting its versatility and coding efficiency. The simulation platform serves as a valuable tool for advancing research in molecular communication and understanding the collective behavior of complex multicellular systems.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 2","pages":"152-165"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A General-Purpose Simulation Platform for Multicellular Molecular Communication Systems\",\"authors\":\"Takanori Saiki;Shohei Imanaka;Shouhei Kobayashi;Tadashi Nakano\",\"doi\":\"10.1109/TMBMC.2025.3544141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design, implementation, and evaluation of a general-purpose simulation platform for multicellular molecular communication systems. Built on an agent-based model, the platform offers flexibility to simulate diverse multicellular systems, such as cancer spheroids and vascular-like networks. It incorporates efficient algorithms, including Cell-List and Barnes-Hut, for calculating cell-cell interaction forces and supports dynamic behaviors such as cell division, growth, and death. The platform’s capabilities are demonstrated through use cases, highlighting its versatility and coding efficiency. The simulation platform serves as a valuable tool for advancing research in molecular communication and understanding the collective behavior of complex multicellular systems.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":\"11 2\",\"pages\":\"152-165\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10896699/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10896699/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了多细胞分子通信系统通用仿真平台的设计、实现和评估。该平台建立在基于代理的模型之上,能够灵活地模拟多种多细胞系统,如癌球体和血管样网络。它结合了高效的算法,包括cell- list和Barnes-Hut,用于计算细胞-细胞相互作用力,并支持细胞分裂、生长和死亡等动态行为。该平台的功能通过用例展示,突出了其通用性和编码效率。该模拟平台为推进分子通讯研究和理解复杂多细胞系统的集体行为提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A General-Purpose Simulation Platform for Multicellular Molecular Communication Systems
This paper presents the design, implementation, and evaluation of a general-purpose simulation platform for multicellular molecular communication systems. Built on an agent-based model, the platform offers flexibility to simulate diverse multicellular systems, such as cancer spheroids and vascular-like networks. It incorporates efficient algorithms, including Cell-List and Barnes-Hut, for calculating cell-cell interaction forces and supports dynamic behaviors such as cell division, growth, and death. The platform’s capabilities are demonstrated through use cases, highlighting its versatility and coding efficiency. The simulation platform serves as a valuable tool for advancing research in molecular communication and understanding the collective behavior of complex multicellular systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信