血液穿透细胞外囊泡的硅片研究

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammad Zoofaghari;Krizia Sagini;Martin Damrath;Azar Zargarnia;Håkon Flaten;Mladen Veletić;Alicia Llorente;Ilangko Balasingham
{"title":"血液穿透细胞外囊泡的硅片研究","authors":"Mohammad Zoofaghari;Krizia Sagini;Martin Damrath;Azar Zargarnia;Håkon Flaten;Mladen Veletić;Alicia Llorente;Ilangko Balasingham","doi":"10.1109/TMBMC.2025.3550323","DOIUrl":null,"url":null,"abstract":"Extracellular vesicles (EVs) are lipid bilayer enclosed nanovesicles involved in intercellular communication. EVs are emerging as potential cancer biomarkers, providing insights into the condition of parent cancer cells. Their composition and entry into the bloodstream are influenced by factors such as tumor grade, type, and the configuration of the vascular network at the release site. In this work, we propose a computer simulation model to emulate the penetration of EVs into the bloodstream. We take into account convective and diffusive parameters that are influenced by the tumor’s characteristics, and the configuration of the vasculature and lymphatic network. We investigate the penetration rate of EVs into the bloodstream in terms of various parameters such as vessel wall permeability and the configuration of the vasculature and lymphatic networks. Our parametric study using a 2D model demonstrates that increasing the permeability coefficient, as observed in tumor tissue, could lead to a two-fold increase in EV penetration rate into the bloodstream. We believe that this model offers pre-experimental insights concerning liquid biopsy assays and the metastatic progression of the disease.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 2","pages":"166-175"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Silico Study of Bloodstream Penetrating Extracellular Vesicles\",\"authors\":\"Mohammad Zoofaghari;Krizia Sagini;Martin Damrath;Azar Zargarnia;Håkon Flaten;Mladen Veletić;Alicia Llorente;Ilangko Balasingham\",\"doi\":\"10.1109/TMBMC.2025.3550323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracellular vesicles (EVs) are lipid bilayer enclosed nanovesicles involved in intercellular communication. EVs are emerging as potential cancer biomarkers, providing insights into the condition of parent cancer cells. Their composition and entry into the bloodstream are influenced by factors such as tumor grade, type, and the configuration of the vascular network at the release site. In this work, we propose a computer simulation model to emulate the penetration of EVs into the bloodstream. We take into account convective and diffusive parameters that are influenced by the tumor’s characteristics, and the configuration of the vasculature and lymphatic network. We investigate the penetration rate of EVs into the bloodstream in terms of various parameters such as vessel wall permeability and the configuration of the vasculature and lymphatic networks. Our parametric study using a 2D model demonstrates that increasing the permeability coefficient, as observed in tumor tissue, could lead to a two-fold increase in EV penetration rate into the bloodstream. We believe that this model offers pre-experimental insights concerning liquid biopsy assays and the metastatic progression of the disease.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":\"11 2\",\"pages\":\"166-175\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10922788/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10922788/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

细胞外囊泡(EVs)是脂质双分子层封闭的纳米囊泡,参与细胞间的通讯。电动汽车正在成为潜在的癌症生物标志物,提供了对母体癌细胞状况的洞察。它们的组成和进入血流受到诸如肿瘤分级、类型和释放部位血管网络结构等因素的影响。在这项工作中,我们提出了一个计算机模拟模型来模拟电动汽车进入血液的渗透。我们考虑到对流和扩散参数是由肿瘤的特点,以及配置的血管和淋巴网络的影响。我们根据各种参数,如血管壁通透性和血管和淋巴网络的配置,研究了ev进入血液的渗透率。我们使用二维模型进行的参数化研究表明,在肿瘤组织中观察到,增加渗透系数可能导致EV进入血液的渗透率增加两倍。我们相信该模型提供了关于液体活检测定和疾病转移进展的实验前见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Silico Study of Bloodstream Penetrating Extracellular Vesicles
Extracellular vesicles (EVs) are lipid bilayer enclosed nanovesicles involved in intercellular communication. EVs are emerging as potential cancer biomarkers, providing insights into the condition of parent cancer cells. Their composition and entry into the bloodstream are influenced by factors such as tumor grade, type, and the configuration of the vascular network at the release site. In this work, we propose a computer simulation model to emulate the penetration of EVs into the bloodstream. We take into account convective and diffusive parameters that are influenced by the tumor’s characteristics, and the configuration of the vasculature and lymphatic network. We investigate the penetration rate of EVs into the bloodstream in terms of various parameters such as vessel wall permeability and the configuration of the vasculature and lymphatic networks. Our parametric study using a 2D model demonstrates that increasing the permeability coefficient, as observed in tumor tissue, could lead to a two-fold increase in EV penetration rate into the bloodstream. We believe that this model offers pre-experimental insights concerning liquid biopsy assays and the metastatic progression of the disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信