xml - mimo系统的深度学习增强信道预测

IF 4.4 3区 计算机科学 Q2 TELECOMMUNICATIONS
Chaoqun Cao;Ming Chen;Yusi Zhang;Yijin Pan;Yihan Cang;Zidi Zhan
{"title":"xml - mimo系统的深度学习增强信道预测","authors":"Chaoqun Cao;Ming Chen;Yusi Zhang;Yijin Pan;Yihan Cang;Zidi Zhan","doi":"10.1109/LCOMM.2025.3558838","DOIUrl":null,"url":null,"abstract":"With the dramatically increasing number of antennas, wireless channel becomes sophisticated and the pilot overhead becomes intolerable. In this letter, we construct the last-bounce cluster (LBC) based channel model to capture the spatial-temporal characteristics in extra-large multiple-input-multiple-output (XL-MIMO) systems. Then, we formulate the channel prediction problem to conserve the pilots. Leveraging the advantages of deep learning (DL), we propose convolutional neural network (CNN)-Transformer based channel prediction method (CTCP) to enhance the spatial-temporal information extraction of the channel. Simulation results validate that CTCP effectively extracts the spatial-temporal correlations of the channel, and enhances the trade-off between accuracy and comlexity in channel prediction for XL-MIMO systems.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 6","pages":"1260-1264"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Enhanced Channel Prediction for XL-MIMO Systems\",\"authors\":\"Chaoqun Cao;Ming Chen;Yusi Zhang;Yijin Pan;Yihan Cang;Zidi Zhan\",\"doi\":\"10.1109/LCOMM.2025.3558838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the dramatically increasing number of antennas, wireless channel becomes sophisticated and the pilot overhead becomes intolerable. In this letter, we construct the last-bounce cluster (LBC) based channel model to capture the spatial-temporal characteristics in extra-large multiple-input-multiple-output (XL-MIMO) systems. Then, we formulate the channel prediction problem to conserve the pilots. Leveraging the advantages of deep learning (DL), we propose convolutional neural network (CNN)-Transformer based channel prediction method (CTCP) to enhance the spatial-temporal information extraction of the channel. Simulation results validate that CTCP effectively extracts the spatial-temporal correlations of the channel, and enhances the trade-off between accuracy and comlexity in channel prediction for XL-MIMO systems.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 6\",\"pages\":\"1260-1264\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10955432/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10955432/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着天线数量的急剧增加,无线信道变得复杂,飞行员的开销变得难以忍受。在本文中,我们构建了基于最后反弹簇(LBC)的信道模型,以捕获超大多输入多输出(xml - mimo)系统中的时空特征。然后,我们提出了信道预测问题,以节省导频。利用深度学习(DL)的优势,我们提出了基于卷积神经网络(CNN)-Transformer的信道预测方法(CTCP)来增强信道的时空信息提取。仿真结果表明,CTCP有效地提取了信道的时空相关性,提高了xml - mimo系统信道预测精度和复杂度之间的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Enhanced Channel Prediction for XL-MIMO Systems
With the dramatically increasing number of antennas, wireless channel becomes sophisticated and the pilot overhead becomes intolerable. In this letter, we construct the last-bounce cluster (LBC) based channel model to capture the spatial-temporal characteristics in extra-large multiple-input-multiple-output (XL-MIMO) systems. Then, we formulate the channel prediction problem to conserve the pilots. Leveraging the advantages of deep learning (DL), we propose convolutional neural network (CNN)-Transformer based channel prediction method (CTCP) to enhance the spatial-temporal information extraction of the channel. Simulation results validate that CTCP effectively extracts the spatial-temporal correlations of the channel, and enhances the trade-off between accuracy and comlexity in channel prediction for XL-MIMO systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信