Laura Botero-Bolívar , David Huergo , Fernanda L. dos Santos , Cornelis H. Venner , Leandro D. de Santana , Esteban Ferrer
{"title":"基于符号回归的气动声学预测经验壁压谱模型","authors":"Laura Botero-Bolívar , David Huergo , Fernanda L. dos Santos , Cornelis H. Venner , Leandro D. de Santana , Esteban Ferrer","doi":"10.1016/j.apacoust.2025.110876","DOIUrl":null,"url":null,"abstract":"<div><div>Fast-turn around methods to predict airfoil trailing-edge noise are crucial for incorporating noise limitations into design optimization loops of several applications. Among these aeroacoustic predictive models, Amiet's theory offers the best balance between accuracy and simplicity. The accuracy of the model relies heavily on precise wall-pressure spectrum predictions, which are often based on single-equation formulations with adjustable parameters. These parameters are calibrated for particular airfoils and flow conditions and consequently tend to fail when applied outside their calibration range.</div><div>This paper introduces a new wall-pressure spectrum empirical model designed to enhance the robustness and accuracy of current state-of-the-art predictions while widening the range of applicability of the model to different airfoils and flow conditions. The model is developed using AI-based symbolic regression via a genetic-algorithm-based approach, and applied to a data set of wall-pressure fluctuations measured on NACA 0008 and NACA 63018 airfoils at multiple angles of attack and inflow velocities, covering turbulent boundary layers with both adverse and favorable pressure gradients. Validation against experimental data (outside the training data set) demonstrates the robustness of the model compared to well-accepted semi-empirical models. Finally, the model is integrated with Amiet's theory to predict the aeroacoustic noise of a full-scale wind turbine, showing good agreement with experimental measurements.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"240 ","pages":"Article 110876"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An empirical wall-pressure spectrum model for aeroacoustic predictions based on symbolic regression\",\"authors\":\"Laura Botero-Bolívar , David Huergo , Fernanda L. dos Santos , Cornelis H. Venner , Leandro D. de Santana , Esteban Ferrer\",\"doi\":\"10.1016/j.apacoust.2025.110876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fast-turn around methods to predict airfoil trailing-edge noise are crucial for incorporating noise limitations into design optimization loops of several applications. Among these aeroacoustic predictive models, Amiet's theory offers the best balance between accuracy and simplicity. The accuracy of the model relies heavily on precise wall-pressure spectrum predictions, which are often based on single-equation formulations with adjustable parameters. These parameters are calibrated for particular airfoils and flow conditions and consequently tend to fail when applied outside their calibration range.</div><div>This paper introduces a new wall-pressure spectrum empirical model designed to enhance the robustness and accuracy of current state-of-the-art predictions while widening the range of applicability of the model to different airfoils and flow conditions. The model is developed using AI-based symbolic regression via a genetic-algorithm-based approach, and applied to a data set of wall-pressure fluctuations measured on NACA 0008 and NACA 63018 airfoils at multiple angles of attack and inflow velocities, covering turbulent boundary layers with both adverse and favorable pressure gradients. Validation against experimental data (outside the training data set) demonstrates the robustness of the model compared to well-accepted semi-empirical models. Finally, the model is integrated with Amiet's theory to predict the aeroacoustic noise of a full-scale wind turbine, showing good agreement with experimental measurements.</div></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":\"240 \",\"pages\":\"Article 110876\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X25003482\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X25003482","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
An empirical wall-pressure spectrum model for aeroacoustic predictions based on symbolic regression
Fast-turn around methods to predict airfoil trailing-edge noise are crucial for incorporating noise limitations into design optimization loops of several applications. Among these aeroacoustic predictive models, Amiet's theory offers the best balance between accuracy and simplicity. The accuracy of the model relies heavily on precise wall-pressure spectrum predictions, which are often based on single-equation formulations with adjustable parameters. These parameters are calibrated for particular airfoils and flow conditions and consequently tend to fail when applied outside their calibration range.
This paper introduces a new wall-pressure spectrum empirical model designed to enhance the robustness and accuracy of current state-of-the-art predictions while widening the range of applicability of the model to different airfoils and flow conditions. The model is developed using AI-based symbolic regression via a genetic-algorithm-based approach, and applied to a data set of wall-pressure fluctuations measured on NACA 0008 and NACA 63018 airfoils at multiple angles of attack and inflow velocities, covering turbulent boundary layers with both adverse and favorable pressure gradients. Validation against experimental data (outside the training data set) demonstrates the robustness of the model compared to well-accepted semi-empirical models. Finally, the model is integrated with Amiet's theory to predict the aeroacoustic noise of a full-scale wind turbine, showing good agreement with experimental measurements.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.