真空退火钼背触点对提高CZTSSe薄膜性能和器件的多方面好处

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Yoganash Putthisigamany , Mohammad Istiaque Hossain , Atef Zekri , Brahim Aïssa , Kazi Sajedur Rahman , Mohd Megat Izhar Sapeli , Mohd Sukor Su'ait , Norasikin Ahmad Ludin , Mohd Adib Ibrahim , Puvaneswaran Chelvanathan
{"title":"真空退火钼背触点对提高CZTSSe薄膜性能和器件的多方面好处","authors":"Yoganash Putthisigamany ,&nbsp;Mohammad Istiaque Hossain ,&nbsp;Atef Zekri ,&nbsp;Brahim Aïssa ,&nbsp;Kazi Sajedur Rahman ,&nbsp;Mohd Megat Izhar Sapeli ,&nbsp;Mohd Sukor Su'ait ,&nbsp;Norasikin Ahmad Ludin ,&nbsp;Mohd Adib Ibrahim ,&nbsp;Puvaneswaran Chelvanathan","doi":"10.1016/j.solmat.2025.113782","DOIUrl":null,"url":null,"abstract":"<div><div>Cu<sub>2</sub>ZnSn(S<sub>x</sub>Se<sub>1−x</sub>)<sub>4</sub> (CZTSSe) thin-film solar cell (TFCS) are emerging as favourable materials for sustainable energy production, offering advantages such as low cost, abundance, and non-toxicity. Despite the significant progress in CZTSSe solar cells, optimizing their performance remains challenging due to factors like back contact material and interfacial layer formation. Molybdenum (Mo) is commonly used as a back contact material due to its robustness and compatibility with the absorber layer. However, the work function of Mo is highly sensitive to its deposition conditions, which can influence the device's open-circuit voltage (V<sub>oc</sub>) and resistance. Our study investigates the impact of Mo work function optimization through post-deposition treatments, such as vacuum annealing, to enhance the electrical and morphological properties of Mo films. Additionally, the growth of Mo(S,Se)<sub>2</sub> layers at the Mo/CZTSSe interface and its influence on the device's performance is studied. We thereby demonstrate that post-deposition annealing of Mo can significantly improve the work function, reduce interfacial layer thickness, and enhance the overall photovoltaic performance of CZTSSe solar cells. Our findings reveal that the optimized Mo back contact results in an improved power conversion efficiency, with Mo_VA-treated films achieving 7.7 % efficiency compared to 0.71 % efficiency for as-sputtered Mo films, highlighting the critical role of back contact optimization in CZTSSe-based photovoltaics.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"292 ","pages":"Article 113782"},"PeriodicalIF":6.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifold benefits of vacuum annealed molybdenum back contact for enhanced CZTSSe thin film properties and device\",\"authors\":\"Yoganash Putthisigamany ,&nbsp;Mohammad Istiaque Hossain ,&nbsp;Atef Zekri ,&nbsp;Brahim Aïssa ,&nbsp;Kazi Sajedur Rahman ,&nbsp;Mohd Megat Izhar Sapeli ,&nbsp;Mohd Sukor Su'ait ,&nbsp;Norasikin Ahmad Ludin ,&nbsp;Mohd Adib Ibrahim ,&nbsp;Puvaneswaran Chelvanathan\",\"doi\":\"10.1016/j.solmat.2025.113782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cu<sub>2</sub>ZnSn(S<sub>x</sub>Se<sub>1−x</sub>)<sub>4</sub> (CZTSSe) thin-film solar cell (TFCS) are emerging as favourable materials for sustainable energy production, offering advantages such as low cost, abundance, and non-toxicity. Despite the significant progress in CZTSSe solar cells, optimizing their performance remains challenging due to factors like back contact material and interfacial layer formation. Molybdenum (Mo) is commonly used as a back contact material due to its robustness and compatibility with the absorber layer. However, the work function of Mo is highly sensitive to its deposition conditions, which can influence the device's open-circuit voltage (V<sub>oc</sub>) and resistance. Our study investigates the impact of Mo work function optimization through post-deposition treatments, such as vacuum annealing, to enhance the electrical and morphological properties of Mo films. Additionally, the growth of Mo(S,Se)<sub>2</sub> layers at the Mo/CZTSSe interface and its influence on the device's performance is studied. We thereby demonstrate that post-deposition annealing of Mo can significantly improve the work function, reduce interfacial layer thickness, and enhance the overall photovoltaic performance of CZTSSe solar cells. Our findings reveal that the optimized Mo back contact results in an improved power conversion efficiency, with Mo_VA-treated films achieving 7.7 % efficiency compared to 0.71 % efficiency for as-sputtered Mo films, highlighting the critical role of back contact optimization in CZTSSe-based photovoltaics.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"292 \",\"pages\":\"Article 113782\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825003836\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003836","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

Cu2ZnSn(SxSe1−x)4 (CZTSSe)薄膜太阳能电池(TFCS)具有低成本、丰度和无毒性等优点,正在成为可持续能源生产的有利材料。尽管CZTSSe太阳能电池取得了重大进展,但由于背接触材料和界面层形成等因素,优化其性能仍然具有挑战性。钼(Mo)由于其坚固性和与吸收层的相容性,通常用作背接触材料。然而,Mo的功函数对其沉积条件非常敏感,这会影响器件的开路电压(Voc)和电阻。本研究探讨了通过真空退火等沉积后处理优化Mo功函数对提高Mo薄膜电学和形态性能的影响。此外,还研究了Mo/CZTSSe界面Mo(S,Se)2层的生长及其对器件性能的影响。因此,我们证明Mo沉积后退火可以显著改善CZTSSe太阳能电池的功函数,减少界面层厚度,提高其整体光伏性能。我们的研究结果表明,优化的Mo背接触导致了功率转换效率的提高,mo_va处理薄膜的效率达到7.7%,而溅射Mo薄膜的效率为0.71%,突出了背接触优化在基于cztse的光伏电池中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Manifold benefits of vacuum annealed molybdenum back contact for enhanced CZTSSe thin film properties and device

Manifold benefits of vacuum annealed molybdenum back contact for enhanced CZTSSe thin film properties and device
Cu2ZnSn(SxSe1−x)4 (CZTSSe) thin-film solar cell (TFCS) are emerging as favourable materials for sustainable energy production, offering advantages such as low cost, abundance, and non-toxicity. Despite the significant progress in CZTSSe solar cells, optimizing their performance remains challenging due to factors like back contact material and interfacial layer formation. Molybdenum (Mo) is commonly used as a back contact material due to its robustness and compatibility with the absorber layer. However, the work function of Mo is highly sensitive to its deposition conditions, which can influence the device's open-circuit voltage (Voc) and resistance. Our study investigates the impact of Mo work function optimization through post-deposition treatments, such as vacuum annealing, to enhance the electrical and morphological properties of Mo films. Additionally, the growth of Mo(S,Se)2 layers at the Mo/CZTSSe interface and its influence on the device's performance is studied. We thereby demonstrate that post-deposition annealing of Mo can significantly improve the work function, reduce interfacial layer thickness, and enhance the overall photovoltaic performance of CZTSSe solar cells. Our findings reveal that the optimized Mo back contact results in an improved power conversion efficiency, with Mo_VA-treated films achieving 7.7 % efficiency compared to 0.71 % efficiency for as-sputtered Mo films, highlighting the critical role of back contact optimization in CZTSSe-based photovoltaics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信