基于热环境改善的城市绿地空间格局优化:城市更新背景下的多目标方法

IF 7.1 1区 地球科学 Q1 ENVIRONMENTAL STUDIES
Liangguo Lin , Yaolong Zhao , Juchao Zhao
{"title":"基于热环境改善的城市绿地空间格局优化:城市更新背景下的多目标方法","authors":"Liangguo Lin ,&nbsp;Yaolong Zhao ,&nbsp;Juchao Zhao","doi":"10.1016/j.compenvurbsys.2025.102320","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid and inevitable trend of urbanization has amplified urban thermal challenges, intensifying the urban heat island (UHI) effect. Given the constraints of limited urban land resources, optimizing the spatial patterns of urban green space (UGS) to maximize their cooling potential is essential for mitigating urban thermal environments and supporting effective urban renewal planning. This research integrates the XGBoost model with the NSGA-II algorithm to propose a multi-objective approach to optimize UGS spatial patterns for thermal environment improvement, using the central urban area of Guangzhou, China, as a case study in the context of urban renewal. To further assess the effectiveness of optimization, the Shapley additive explanation (SHAP) model was employed to examine how landscape pattern metrics, which characterize UGS spatial patterns, influence LST before and after optimization. The results demonstrate that optimized UGS spatial patterns, achieved through a controlled expansion of UGS area, significantly alleviated thermal stress by reducing the total LST by 2,799.82 °C and lowering its standard deviation by 0.04. Industrial zones, densely populated areas, and commercial districts exhibited the most pronounced LST reductions that spatially corresponded to changes in UGS spatial patterns. In addition, post-optimization analysis revealed notable changes in key landscape pattern metrics: patch cohesion index (COHESION), patch density (PD), landscape shape index (LSI), and percent of landscape (PLAND). Compared to pre-optimization conditions, their positive contributions to LST were weakened, while their cooling effects were enhanced. This research provides a “space-for-time” planning paradigm that offers intuitive and actionable decision-making support for urban renewal planners and policymakers.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"121 ","pages":"Article 102320"},"PeriodicalIF":7.1000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing urban green space spatial patterns for thermal environment improvement: A multi-objective approach in the context of urban renewal\",\"authors\":\"Liangguo Lin ,&nbsp;Yaolong Zhao ,&nbsp;Juchao Zhao\",\"doi\":\"10.1016/j.compenvurbsys.2025.102320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid and inevitable trend of urbanization has amplified urban thermal challenges, intensifying the urban heat island (UHI) effect. Given the constraints of limited urban land resources, optimizing the spatial patterns of urban green space (UGS) to maximize their cooling potential is essential for mitigating urban thermal environments and supporting effective urban renewal planning. This research integrates the XGBoost model with the NSGA-II algorithm to propose a multi-objective approach to optimize UGS spatial patterns for thermal environment improvement, using the central urban area of Guangzhou, China, as a case study in the context of urban renewal. To further assess the effectiveness of optimization, the Shapley additive explanation (SHAP) model was employed to examine how landscape pattern metrics, which characterize UGS spatial patterns, influence LST before and after optimization. The results demonstrate that optimized UGS spatial patterns, achieved through a controlled expansion of UGS area, significantly alleviated thermal stress by reducing the total LST by 2,799.82 °C and lowering its standard deviation by 0.04. Industrial zones, densely populated areas, and commercial districts exhibited the most pronounced LST reductions that spatially corresponded to changes in UGS spatial patterns. In addition, post-optimization analysis revealed notable changes in key landscape pattern metrics: patch cohesion index (COHESION), patch density (PD), landscape shape index (LSI), and percent of landscape (PLAND). Compared to pre-optimization conditions, their positive contributions to LST were weakened, while their cooling effects were enhanced. This research provides a “space-for-time” planning paradigm that offers intuitive and actionable decision-making support for urban renewal planners and policymakers.</div></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"121 \",\"pages\":\"Article 102320\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971525000730\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971525000730","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

城市化的快速和必然趋势加大了城市热挑战,加剧了城市热岛效应。在城市土地资源有限的约束下,优化城市绿地空间格局,最大限度地发挥其降温潜力,对于缓解城市热环境和支持有效的城市更新规划至关重要。本研究将XGBoost模型与NSGA-II算法相结合,以城市更新背景下的广州中心城区为例,提出了一种多目标优化UGS空间格局的热环境改善方法。为了进一步评估优化的有效性,采用Shapley加性解释(SHAP)模型研究了景观格局指标(表征UGS空间格局)在优化前后对地表温度的影响。结果表明,优化后的UGS空间格局通过控制UGS面积的扩大,使总地表温度降低2,799.82°C,标准差降低0.04,显著缓解了热应力。工业区、人口稠密地区和商业区的地表温度降低最为明显,这在空间上与UGS空间格局的变化相对应。此外,优化后分析显示,斑块衔接指数(cohesion)、斑块密度(PD)、景观形状指数(LSI)和景观百分比(PLAND)等关键景观格局指标发生了显著变化。与优化前相比,它们对地表温度的正贡献减弱,而冷却作用增强。本研究提供了一个“空间换时间”的规划范式,为城市更新规划者和决策者提供了直观和可操作的决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing urban green space spatial patterns for thermal environment improvement: A multi-objective approach in the context of urban renewal
The rapid and inevitable trend of urbanization has amplified urban thermal challenges, intensifying the urban heat island (UHI) effect. Given the constraints of limited urban land resources, optimizing the spatial patterns of urban green space (UGS) to maximize their cooling potential is essential for mitigating urban thermal environments and supporting effective urban renewal planning. This research integrates the XGBoost model with the NSGA-II algorithm to propose a multi-objective approach to optimize UGS spatial patterns for thermal environment improvement, using the central urban area of Guangzhou, China, as a case study in the context of urban renewal. To further assess the effectiveness of optimization, the Shapley additive explanation (SHAP) model was employed to examine how landscape pattern metrics, which characterize UGS spatial patterns, influence LST before and after optimization. The results demonstrate that optimized UGS spatial patterns, achieved through a controlled expansion of UGS area, significantly alleviated thermal stress by reducing the total LST by 2,799.82 °C and lowering its standard deviation by 0.04. Industrial zones, densely populated areas, and commercial districts exhibited the most pronounced LST reductions that spatially corresponded to changes in UGS spatial patterns. In addition, post-optimization analysis revealed notable changes in key landscape pattern metrics: patch cohesion index (COHESION), patch density (PD), landscape shape index (LSI), and percent of landscape (PLAND). Compared to pre-optimization conditions, their positive contributions to LST were weakened, while their cooling effects were enhanced. This research provides a “space-for-time” planning paradigm that offers intuitive and actionable decision-making support for urban renewal planners and policymakers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.30
自引率
7.40%
发文量
111
审稿时长
32 days
期刊介绍: Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信