{"title":"非保守可压缩双流体模型外域光滑解的全局存在性","authors":"Qimeng Yang, Lei Yao","doi":"10.1016/j.jde.2025.113558","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the initial boundary value problem for a non-conservative compressible two-fluid model with Navier-slip boundary conditions in an exterior domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We prove the global existence of smooth solution in a setting that the capillary pressure <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo><mo>=</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>−</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>≠</mo><mn>0</mn></math></span>, where <em>f</em> is assumed to be a strictly decreasing function near the equilibrium of <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>, and prove that this assumption has a critical stabilization effect in the question. Furthermore, we establish the explicit decay rates of smooth solution to its equilibrium state.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113558"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence of smooth solution to a non-conservative compressible two-fluid model in exterior domain\",\"authors\":\"Qimeng Yang, Lei Yao\",\"doi\":\"10.1016/j.jde.2025.113558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the initial boundary value problem for a non-conservative compressible two-fluid model with Navier-slip boundary conditions in an exterior domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We prove the global existence of smooth solution in a setting that the capillary pressure <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo><mo>=</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>−</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>≠</mo><mn>0</mn></math></span>, where <em>f</em> is assumed to be a strictly decreasing function near the equilibrium of <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>, and prove that this assumption has a critical stabilization effect in the question. Furthermore, we establish the explicit decay rates of smooth solution to its equilibrium state.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113558\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005856\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005856","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global existence of smooth solution to a non-conservative compressible two-fluid model in exterior domain
In this paper, we consider the initial boundary value problem for a non-conservative compressible two-fluid model with Navier-slip boundary conditions in an exterior domain of . We prove the global existence of smooth solution in a setting that the capillary pressure , where f is assumed to be a strictly decreasing function near the equilibrium of , and prove that this assumption has a critical stabilization effect in the question. Furthermore, we establish the explicit decay rates of smooth solution to its equilibrium state.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics