非保守可压缩双流体模型外域光滑解的全局存在性

IF 2.3 2区 数学 Q1 MATHEMATICS
Qimeng Yang, Lei Yao
{"title":"非保守可压缩双流体模型外域光滑解的全局存在性","authors":"Qimeng Yang,&nbsp;Lei Yao","doi":"10.1016/j.jde.2025.113558","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the initial boundary value problem for a non-conservative compressible two-fluid model with Navier-slip boundary conditions in an exterior domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We prove the global existence of smooth solution in a setting that the capillary pressure <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo><mo>=</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>−</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>≠</mo><mn>0</mn></math></span>, where <em>f</em> is assumed to be a strictly decreasing function near the equilibrium of <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>, and prove that this assumption has a critical stabilization effect in the question. Furthermore, we establish the explicit decay rates of smooth solution to its equilibrium state.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113558"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence of smooth solution to a non-conservative compressible two-fluid model in exterior domain\",\"authors\":\"Qimeng Yang,&nbsp;Lei Yao\",\"doi\":\"10.1016/j.jde.2025.113558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the initial boundary value problem for a non-conservative compressible two-fluid model with Navier-slip boundary conditions in an exterior domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We prove the global existence of smooth solution in a setting that the capillary pressure <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>)</mo><mo>=</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>−</mo><msup><mrow><mi>P</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>≠</mo><mn>0</mn></math></span>, where <em>f</em> is assumed to be a strictly decreasing function near the equilibrium of <span><math><msup><mrow><mi>α</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>ρ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span>, and prove that this assumption has a critical stabilization effect in the question. Furthermore, we establish the explicit decay rates of smooth solution to its equilibrium state.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113558\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005856\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005856","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在R3外域上具有Navier-slip边界条件的非保守可压缩双流体模型的初边值问题。证明了毛细压力f(α−ρ−)=P+−P−≠0条件下光滑解的整体存在性,其中f被假定为α−ρ−平衡点附近的严格递减函数,并证明了该假设在问题中具有临界稳定效应。进一步,我们建立了其平衡态光滑解的显式衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence of smooth solution to a non-conservative compressible two-fluid model in exterior domain
In this paper, we consider the initial boundary value problem for a non-conservative compressible two-fluid model with Navier-slip boundary conditions in an exterior domain of R3. We prove the global existence of smooth solution in a setting that the capillary pressure f(αρ)=P+P0, where f is assumed to be a strictly decreasing function near the equilibrium of αρ, and prove that this assumption has a critical stabilization effect in the question. Furthermore, we establish the explicit decay rates of smooth solution to its equilibrium state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信