一类带扇形算子的非局部演化方程解的正则性

IF 1.2 3区 数学 Q1 MATHEMATICS
Nguyen Van Dac , Tran Dinh Ke , Pham Anh Toan
{"title":"一类带扇形算子的非局部演化方程解的正则性","authors":"Nguyen Van Dac ,&nbsp;Tran Dinh Ke ,&nbsp;Pham Anh Toan","doi":"10.1016/j.jmaa.2025.129798","DOIUrl":null,"url":null,"abstract":"<div><div>We deal with an abstract model of nonlocal evolution equations with sectorial operators and nonlinear perturbations. Regularity estimates for resolvent families are derived through semigroup representation, which allow us to show a global solvability for the associated Cauchy problem in fractional power spaces. Employing fixed point argument and resolvent theory, we obtain a Hölder regularity result for the mentioned problem. Then the analytic resolvent theory is utilized to demonstrate that the obtained solution is a strong one under appropriate conditions. An application to a class of nonlinear subdiffusion equations in the whole space is given.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129798"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the regularity of solutions to a class of nonlocal evolution equations with sectorial operators\",\"authors\":\"Nguyen Van Dac ,&nbsp;Tran Dinh Ke ,&nbsp;Pham Anh Toan\",\"doi\":\"10.1016/j.jmaa.2025.129798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We deal with an abstract model of nonlocal evolution equations with sectorial operators and nonlinear perturbations. Regularity estimates for resolvent families are derived through semigroup representation, which allow us to show a global solvability for the associated Cauchy problem in fractional power spaces. Employing fixed point argument and resolvent theory, we obtain a Hölder regularity result for the mentioned problem. Then the analytic resolvent theory is utilized to demonstrate that the obtained solution is a strong one under appropriate conditions. An application to a class of nonlinear subdiffusion equations in the whole space is given.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 2\",\"pages\":\"Article 129798\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005797\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005797","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有扇形算子和非线性扰动的非局部演化方程的抽象模型。通过半群表示,导出了可解族的正则性估计,从而证明了分数阶幂空间中相关柯西问题的全局可解性。利用不动点论证和可解性理论,得到了该问题的Hölder正则性结果。然后利用解析解理论证明了所得到的解在适当条件下是强解。给出了在整个空间中一类非线性次扩散方程的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the regularity of solutions to a class of nonlocal evolution equations with sectorial operators
We deal with an abstract model of nonlocal evolution equations with sectorial operators and nonlinear perturbations. Regularity estimates for resolvent families are derived through semigroup representation, which allow us to show a global solvability for the associated Cauchy problem in fractional power spaces. Employing fixed point argument and resolvent theory, we obtain a Hölder regularity result for the mentioned problem. Then the analytic resolvent theory is utilized to demonstrate that the obtained solution is a strong one under appropriate conditions. An application to a class of nonlinear subdiffusion equations in the whole space is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信