{"title":"层流条件下MSR换热器内部产热对传热的影响","authors":"Dong-Hyuk Park, Bum-Jin Chung","doi":"10.1016/j.net.2025.103736","DOIUrl":null,"url":null,"abstract":"<div><div>A prominent feature of Molten Salt Reactor (MSR) is that the Internal Heat Generation (IHG) occurs within the fluid, as the nuclear fuel is dissolved in the coolant. This renders the energy equation non-homogeneous, requiring different mathematical approach. However, studies that quantitatively analyze the influence of IHG are limited. Especially, in the heat exchanger the IHG occurs coincide with wall cooling. Therefore, we analyzed the influence of IHG on a laminar pipe under wall cooling condition. Based on the superposition principle, the original problem is decomposed into two simpler boundary-layer sub-problems. The presence of IHG increased heat transfer rate and its influence increased with the magnitude of the IHG. Under uniform wall temperature condition, after sufficient flow development, the fluid temperature becomes constant exhibiting a conduction-like behavior, whereas under uniform heat flux condition, the fluid temperature increased despite heat transfer to the wall, superficially resembling a reverse heat transfer. Using the calculated data, the new heat transfer correlations were developed to incorporates the influence of IHG. The correlations were then applied to performance evaluations of MSR heat exchangers. It concludes that neglecting the IHG could lead to an underestimation of total heat transfer rate by up to 26 %. The findings offer a quantitative basis for considering IHG impact in future MSR heat exchanger design.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"57 10","pages":"Article 103736"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of internal heat generation on heat transfer in an MSR heat exchanger under laminar flow condition\",\"authors\":\"Dong-Hyuk Park, Bum-Jin Chung\",\"doi\":\"10.1016/j.net.2025.103736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A prominent feature of Molten Salt Reactor (MSR) is that the Internal Heat Generation (IHG) occurs within the fluid, as the nuclear fuel is dissolved in the coolant. This renders the energy equation non-homogeneous, requiring different mathematical approach. However, studies that quantitatively analyze the influence of IHG are limited. Especially, in the heat exchanger the IHG occurs coincide with wall cooling. Therefore, we analyzed the influence of IHG on a laminar pipe under wall cooling condition. Based on the superposition principle, the original problem is decomposed into two simpler boundary-layer sub-problems. The presence of IHG increased heat transfer rate and its influence increased with the magnitude of the IHG. Under uniform wall temperature condition, after sufficient flow development, the fluid temperature becomes constant exhibiting a conduction-like behavior, whereas under uniform heat flux condition, the fluid temperature increased despite heat transfer to the wall, superficially resembling a reverse heat transfer. Using the calculated data, the new heat transfer correlations were developed to incorporates the influence of IHG. The correlations were then applied to performance evaluations of MSR heat exchangers. It concludes that neglecting the IHG could lead to an underestimation of total heat transfer rate by up to 26 %. The findings offer a quantitative basis for considering IHG impact in future MSR heat exchanger design.</div></div>\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":\"57 10\",\"pages\":\"Article 103736\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1738573325003043\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573325003043","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Influence of internal heat generation on heat transfer in an MSR heat exchanger under laminar flow condition
A prominent feature of Molten Salt Reactor (MSR) is that the Internal Heat Generation (IHG) occurs within the fluid, as the nuclear fuel is dissolved in the coolant. This renders the energy equation non-homogeneous, requiring different mathematical approach. However, studies that quantitatively analyze the influence of IHG are limited. Especially, in the heat exchanger the IHG occurs coincide with wall cooling. Therefore, we analyzed the influence of IHG on a laminar pipe under wall cooling condition. Based on the superposition principle, the original problem is decomposed into two simpler boundary-layer sub-problems. The presence of IHG increased heat transfer rate and its influence increased with the magnitude of the IHG. Under uniform wall temperature condition, after sufficient flow development, the fluid temperature becomes constant exhibiting a conduction-like behavior, whereas under uniform heat flux condition, the fluid temperature increased despite heat transfer to the wall, superficially resembling a reverse heat transfer. Using the calculated data, the new heat transfer correlations were developed to incorporates the influence of IHG. The correlations were then applied to performance evaluations of MSR heat exchangers. It concludes that neglecting the IHG could lead to an underestimation of total heat transfer rate by up to 26 %. The findings offer a quantitative basis for considering IHG impact in future MSR heat exchanger design.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development