Jens T. Birkholzer, Bastian J. Graupner, Jon Harrington, Rick Jayne, Olaf Kolditz, Kristopher L. Kuhlman, Tara LaForce, Rosie C. Leone, Paul E. Mariner, Christopher McDermott, Carlos Plúa, Emily Stein, Yutaka Sugita, Elena Tamayo-Mas, Kate Thatcher, Jeoung Seok Yoon, Alexander E. Bond
{"title":"DECOVALEX-2023:促进对地质系统中热-水-机械-化学(THMC)耦合过程的理解和建模的国际合作","authors":"Jens T. Birkholzer, Bastian J. Graupner, Jon Harrington, Rick Jayne, Olaf Kolditz, Kristopher L. Kuhlman, Tara LaForce, Rosie C. Leone, Paul E. Mariner, Christopher McDermott, Carlos Plúa, Emily Stein, Yutaka Sugita, Elena Tamayo-Mas, Kate Thatcher, Jeoung Seok Yoon, Alexander E. Bond","doi":"10.1016/j.gete.2025.100685","DOIUrl":null,"url":null,"abstract":"<div><div>The DECOVALEX initiative is an international research collaboration (<span><span>www.decovalex.org</span><svg><path></path></svg></span>), initiated in 1992, for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. DECOVALEX stands for “DEvelopment of COupled Models and VALidation against EXperiments”. The creation of this international initiative was motivated by the recognition that prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel. DECOVALEX emphasizes joint analysis and comparative modeling of the complex perturbations and coupled processes in geologic repositories and how these impact long-term performance predictions. The most recent phase of the DECOVALEX Project, here referred to as DECOVALEX-2023, started in early 2020 and ended in late 2023. More than fifty research teams associated with 17 international DECOVALEX partner organizations participated in the comparative evaluation of eight modeling tasks covering a wide range of spatial and temporal scales, geological formations, and coupled processes. This Virtual Special Issue on DECOVALEX-2023 provides an in-depth overview of these collaborative research efforts and how these have advanced the state-of-the-art of understanding and modeling coupled THMC processes. While primarily focused on radioactive waste, much of the work included here has wider application to many geoengineering topics.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"42 ","pages":"Article 100685"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DECOVALEX-2023: An international collaboration for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems\",\"authors\":\"Jens T. Birkholzer, Bastian J. Graupner, Jon Harrington, Rick Jayne, Olaf Kolditz, Kristopher L. Kuhlman, Tara LaForce, Rosie C. Leone, Paul E. Mariner, Christopher McDermott, Carlos Plúa, Emily Stein, Yutaka Sugita, Elena Tamayo-Mas, Kate Thatcher, Jeoung Seok Yoon, Alexander E. Bond\",\"doi\":\"10.1016/j.gete.2025.100685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The DECOVALEX initiative is an international research collaboration (<span><span>www.decovalex.org</span><svg><path></path></svg></span>), initiated in 1992, for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. DECOVALEX stands for “DEvelopment of COupled Models and VALidation against EXperiments”. The creation of this international initiative was motivated by the recognition that prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel. DECOVALEX emphasizes joint analysis and comparative modeling of the complex perturbations and coupled processes in geologic repositories and how these impact long-term performance predictions. The most recent phase of the DECOVALEX Project, here referred to as DECOVALEX-2023, started in early 2020 and ended in late 2023. More than fifty research teams associated with 17 international DECOVALEX partner organizations participated in the comparative evaluation of eight modeling tasks covering a wide range of spatial and temporal scales, geological formations, and coupled processes. This Virtual Special Issue on DECOVALEX-2023 provides an in-depth overview of these collaborative research efforts and how these have advanced the state-of-the-art of understanding and modeling coupled THMC processes. While primarily focused on radioactive waste, much of the work included here has wider application to many geoengineering topics.</div></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"42 \",\"pages\":\"Article 100685\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380825000504\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000504","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
DECOVALEX-2023: An international collaboration for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems
The DECOVALEX initiative is an international research collaboration (www.decovalex.org), initiated in 1992, for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. DECOVALEX stands for “DEvelopment of COupled Models and VALidation against EXperiments”. The creation of this international initiative was motivated by the recognition that prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel. DECOVALEX emphasizes joint analysis and comparative modeling of the complex perturbations and coupled processes in geologic repositories and how these impact long-term performance predictions. The most recent phase of the DECOVALEX Project, here referred to as DECOVALEX-2023, started in early 2020 and ended in late 2023. More than fifty research teams associated with 17 international DECOVALEX partner organizations participated in the comparative evaluation of eight modeling tasks covering a wide range of spatial and temporal scales, geological formations, and coupled processes. This Virtual Special Issue on DECOVALEX-2023 provides an in-depth overview of these collaborative research efforts and how these have advanced the state-of-the-art of understanding and modeling coupled THMC processes. While primarily focused on radioactive waste, much of the work included here has wider application to many geoengineering topics.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.