基于遗传算法和人工蜂群的多目标三维集装箱装载智能决策支持系统

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Suriya Phongmoo , Komgrit Leksakul , Chaichana Suedumrong , Chakkrapong Kuensaen
{"title":"基于遗传算法和人工蜂群的多目标三维集装箱装载智能决策支持系统","authors":"Suriya Phongmoo ,&nbsp;Komgrit Leksakul ,&nbsp;Chaichana Suedumrong ,&nbsp;Chakkrapong Kuensaen","doi":"10.1016/j.asoc.2025.113473","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient container loading is a complex and critical logistics challenge, especially when dealing with strongly heterogeneous boxes in three dimensions. This study proposes an intelligent decision support system that addresses the 3D Single Container Loading Problem (3D-SCLP) using a hybrid meta-heuristic approach combining Genetic Algorithm (GA) and Artificial Bee Colony (ABC). The system introduces rotation constraints as a decision variable and optimizes for two objectives: maximizing profit and minimizing unused space. A mathematical model based on the bottom-left fill (BLF) method was developed to ensure feasible loading with non-overlapping placements and valid rotations. Experimental results on 15 real-world and 225 synthetic test cases demonstrate the superiority of the proposed GA+ABC method over standalone algorithms in both solution quality and robustness. The system achieves the lowest hypervolume metric (119.28), indicating better convergence to Pareto-optimal fronts, and provides practical feasibility for real-world logistics optimization.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"180 ","pages":"Article 113473"},"PeriodicalIF":7.2000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent decision support system for multi-objective 3D container loading using genetic algorithm combined with artificial bee colony\",\"authors\":\"Suriya Phongmoo ,&nbsp;Komgrit Leksakul ,&nbsp;Chaichana Suedumrong ,&nbsp;Chakkrapong Kuensaen\",\"doi\":\"10.1016/j.asoc.2025.113473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient container loading is a complex and critical logistics challenge, especially when dealing with strongly heterogeneous boxes in three dimensions. This study proposes an intelligent decision support system that addresses the 3D Single Container Loading Problem (3D-SCLP) using a hybrid meta-heuristic approach combining Genetic Algorithm (GA) and Artificial Bee Colony (ABC). The system introduces rotation constraints as a decision variable and optimizes for two objectives: maximizing profit and minimizing unused space. A mathematical model based on the bottom-left fill (BLF) method was developed to ensure feasible loading with non-overlapping placements and valid rotations. Experimental results on 15 real-world and 225 synthetic test cases demonstrate the superiority of the proposed GA+ABC method over standalone algorithms in both solution quality and robustness. The system achieves the lowest hypervolume metric (119.28), indicating better convergence to Pareto-optimal fronts, and provides practical feasibility for real-world logistics optimization.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"180 \",\"pages\":\"Article 113473\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625007847\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625007847","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

高效的集装箱装载是一项复杂而关键的物流挑战,特别是在处理三维高度异构的箱子时。本研究提出了一种结合遗传算法(GA)和人工蜂群(ABC)的混合元启发式方法来解决3D单集装箱装载问题(3D- sclp)的智能决策支持系统。该系统引入旋转约束作为决策变量,并针对利润最大化和未使用空间最小化两个目标进行优化。建立了一种基于左下角填充法的数学模型,以确保可行的加载,不重叠的位置和有效的旋转。15个真实案例和225个综合案例的实验结果表明,本文提出的GA+ABC方法在解质量和鲁棒性方面都优于独立算法。该系统实现了最低的hypervolume metric(119.28),较好地收敛于pareto最优前沿,为现实世界的物流优化提供了实际可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent decision support system for multi-objective 3D container loading using genetic algorithm combined with artificial bee colony
Efficient container loading is a complex and critical logistics challenge, especially when dealing with strongly heterogeneous boxes in three dimensions. This study proposes an intelligent decision support system that addresses the 3D Single Container Loading Problem (3D-SCLP) using a hybrid meta-heuristic approach combining Genetic Algorithm (GA) and Artificial Bee Colony (ABC). The system introduces rotation constraints as a decision variable and optimizes for two objectives: maximizing profit and minimizing unused space. A mathematical model based on the bottom-left fill (BLF) method was developed to ensure feasible loading with non-overlapping placements and valid rotations. Experimental results on 15 real-world and 225 synthetic test cases demonstrate the superiority of the proposed GA+ABC method over standalone algorithms in both solution quality and robustness. The system achieves the lowest hypervolume metric (119.28), indicating better convergence to Pareto-optimal fronts, and provides practical feasibility for real-world logistics optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信