{"title":"非常温和的扩散增强和奇异灵敏度:二维趋化- navier - stokes系统有界弱解的存在性","authors":"Tobias Black","doi":"10.1016/j.jde.2025.113555","DOIUrl":null,"url":null,"abstract":"<div><div>We consider an initial-boundary value problem for the chemotaxis-Navier–Stokes system<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mspace></mspace></mtd><mtd><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo><mi>∇</mi><mi>n</mi><mo>−</mo><mi>n</mi><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>c</mi><mspace></mspace></mtd><mtd><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>c</mi><mi>n</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mo>(</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mo>)</mo><mi>u</mi><mspace></mspace></mtd><mtd><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>∇</mi><mi>P</mi><mo>+</mo><mi>n</mi><mi>∇</mi><mi>Φ</mi><mo>,</mo><mspace></mspace><mi>∇</mi><mo>⋅</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><mo>(</mo><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo><mi>∇</mi><mi>n</mi><mo>−</mo><mi>n</mi><mspace></mspace></mtd><mtd><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>)</mo><mo>⋅</mo><mi>ν</mi><mo>=</mo><mi>∇</mi><mi>c</mi><mo>⋅</mo><mi>ν</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><mi>n</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mspace></mspace><mi>c</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mi>u</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mrow></math></span></span></span> in a smoothly bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Assuming <span><math><mi>S</mi><mo>:</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></msup></math></span> to be sufficiently regular and such that with <span><math><mi>γ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>]</mo></math></span> and some non-decreasing <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, we have<span><span><span><math><mrow><mo>|</mo><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mfrac><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>c</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></mfrac><mspace></mspace><mtext>for all </mtext><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>∈</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo></mrow></math></span></span></span> we show that if <span><math><mi>D</mi><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is suitably regular and positive throughout <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, then for all <span><math><mi>M</mi><mo>></mo><mn>0</mn></math></span> one can find <span><math><mi>L</mi><mo>(</mo><mi>M</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span> such that whenever<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>></mo><mi>L</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>n</mi><mo>↘</mo><mn>0</mn></mrow></munder><mspace></mspace><mfrac><mrow><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mfrac><mo>></mo><mn>0</mn></math></span></span></span> are satisfied and the initial data <span><math><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> are suitably regular and satisfy <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>≤</mo><mi>M</mi></math></span> there is a global and bounded weak solution for the initial-boundary value problem above. Under the additional assumption of <span><math><mi>D</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>></mo><mn>0</mn></math></span> this solution is moreover a classical solution of the same problem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"443 ","pages":"Article 113555"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Very mild diffusion enhancement and singular sensitivity: Existence of bounded weak solutions in a two-dimensional chemotaxis-Navier–Stokes system\",\"authors\":\"Tobias Black\",\"doi\":\"10.1016/j.jde.2025.113555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider an initial-boundary value problem for the chemotaxis-Navier–Stokes system<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mspace></mspace></mtd><mtd><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo><mi>∇</mi><mi>n</mi><mo>−</mo><mi>n</mi><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>c</mi><mspace></mspace></mtd><mtd><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>c</mi><mi>n</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mo>(</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mo>)</mo><mi>u</mi><mspace></mspace></mtd><mtd><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>∇</mi><mi>P</mi><mo>+</mo><mi>n</mi><mi>∇</mi><mi>Φ</mi><mo>,</mo><mspace></mspace><mi>∇</mi><mo>⋅</mo><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><mo>(</mo><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo><mi>∇</mi><mi>n</mi><mo>−</mo><mi>n</mi><mspace></mspace></mtd><mtd><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>)</mo><mo>⋅</mo><mi>ν</mi><mo>=</mo><mi>∇</mi><mi>c</mi><mo>⋅</mo><mi>ν</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><mi>n</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mspace></mspace><mi>c</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mi>u</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mrow></math></span></span></span> in a smoothly bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Assuming <span><math><mi>S</mi><mo>:</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></msup></math></span> to be sufficiently regular and such that with <span><math><mi>γ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mo>]</mo></math></span> and some non-decreasing <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, we have<span><span><span><math><mrow><mo>|</mo><mi>S</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mfrac><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>c</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></mfrac><mspace></mspace><mtext>for all </mtext><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo><mo>∈</mo><mover><mrow><mi>Ω</mi></mrow><mo>‾</mo></mover><mo>×</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>×</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo></mrow></math></span></span></span> we show that if <span><math><mi>D</mi><mo>:</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> is suitably regular and positive throughout <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, then for all <span><math><mi>M</mi><mo>></mo><mn>0</mn></math></span> one can find <span><math><mi>L</mi><mo>(</mo><mi>M</mi><mo>)</mo><mo>></mo><mn>0</mn></math></span> such that whenever<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>></mo><mi>L</mi><mspace></mspace><mtext>and</mtext><mspace></mspace><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>inf</mi></mrow></mrow><mrow><mi>n</mi><mo>↘</mo><mn>0</mn></mrow></munder><mspace></mspace><mfrac><mrow><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></mfrac><mo>></mo><mn>0</mn></math></span></span></span> are satisfied and the initial data <span><math><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> are suitably regular and satisfy <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></msub><mo>≤</mo><mi>M</mi></math></span> there is a global and bounded weak solution for the initial-boundary value problem above. Under the additional assumption of <span><math><mi>D</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>></mo><mn>0</mn></math></span> this solution is moreover a classical solution of the same problem.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"443 \",\"pages\":\"Article 113555\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005820\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005820","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑一个初边值问题chemotaxis-Navier-Stokes系统{nt + u⋅∇n =∇⋅(D n (n)∇−nS (x, n, c)⋅∇c), x∈Ω,t> 0, ct + u⋅∇c = cΔ−cn, x∈Ω,t> 0, ut + (u⋅∇)u =Δu +∇P + n∇Φ,∇⋅u = 0, x∈Ω,t> 0, (D n (n)∇−nS (x, n, c)⋅∇c)⋅νc =∇⋅ν= 0,u = 0, x∈∂Ω,t> 0, n(⋅0)= n0, c(⋅,0)= c0, u(⋅,0)=情况,x∈Ω,顺利有限域中Ω⊂R2。假设S:Ω(0,∞)x(0,∞)→R2×2充分正则,并且当γ∈[0,56]和一些非递减的S0:(0,∞)→(0,∞)时,我们得到|S(x,n,c)|≤S0(c)cγ对于所有(x,n,c)∈Ω (x,n,∞)x(0,∞),我们证明如果D:[0,∞)→[0,∞)在整个(0,∞)中是适当正则且正的,那么对于所有的M>;0,我们可以找到L(M)>0,使得当everliminfn→∞D(n)>; 0满足,并且初始数据(n0,c0,u0)是适当正则的并且满足‖c0‖L∞(Ω)≤M时,存在上述初边值问题的一个全局有界弱解。在附加假设D(0)>;0下,该解是同一问题的经典解。
Very mild diffusion enhancement and singular sensitivity: Existence of bounded weak solutions in a two-dimensional chemotaxis-Navier–Stokes system
We consider an initial-boundary value problem for the chemotaxis-Navier–Stokes system in a smoothly bounded domain . Assuming to be sufficiently regular and such that with and some non-decreasing , we have we show that if is suitably regular and positive throughout , then for all one can find such that whenever are satisfied and the initial data are suitably regular and satisfy there is a global and bounded weak solution for the initial-boundary value problem above. Under the additional assumption of this solution is moreover a classical solution of the same problem.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics