大语言模型遇上混沌:一种新的虚假评论检测深度学习模型

IF 5.9 3区 管理学 Q1 BUSINESS
Yu Fan , Haizhou Fan , Fuqian Zhang , Zhenhua Wang
{"title":"大语言模型遇上混沌:一种新的虚假评论检测深度学习模型","authors":"Yu Fan ,&nbsp;Haizhou Fan ,&nbsp;Fuqian Zhang ,&nbsp;Zhenhua Wang","doi":"10.1016/j.elerap.2025.101521","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting fake online reviews is crucial for the e-commerce ecosystem. However, existing studies often fail to mine the intrinsic attributes of reviews, which limits detection performance. In this paper, we introduce a novel fake review detection model, LLMChaos, which investigates reviews from the perspectives of large language models (LLMs) and chaos theory. Specifically, we first propose a method that blends energy selection with LLMs to generate review time series. Second, we construct a space mapping mechanism with multiple chaotic attributes, embracing the intrinsic attributes of reviews. Finally, we design a hierarchical learning network that trains in deep contrastive learning across LLM layers, chaotic attribute layers, and Transformer layers. Extensive experiments demonstrate that LLMChaos is robust and state-of-the-art. For instance, on the Hotel dataset, LLMChaos achieves 94.78% F1, outperforming recent models by 1.42%-19.78%; on the Amazon dataset, LLMChaos achieves 93.15% F1, surpassing recent models by 1.45%-18.39%. Moreover, we contribute novel discoveries, for example, chaotic behaviors of reviews generally exhibit bounded ranges: Lyapunov exponent (0–0.0125), Correlation dimension (0.25–0.5), Kolmogorov entropy (0.75–0.85), Fractal spectrum (0–1.5), and Recurrence rate (0.005–0.015); real and fake reviews display distinct chaotic distributions.</div></div>","PeriodicalId":50541,"journal":{"name":"Electronic Commerce Research and Applications","volume":"73 ","pages":"Article 101521"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large language model meets chaos: A new deep learning model for fake review detection\",\"authors\":\"Yu Fan ,&nbsp;Haizhou Fan ,&nbsp;Fuqian Zhang ,&nbsp;Zhenhua Wang\",\"doi\":\"10.1016/j.elerap.2025.101521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Detecting fake online reviews is crucial for the e-commerce ecosystem. However, existing studies often fail to mine the intrinsic attributes of reviews, which limits detection performance. In this paper, we introduce a novel fake review detection model, LLMChaos, which investigates reviews from the perspectives of large language models (LLMs) and chaos theory. Specifically, we first propose a method that blends energy selection with LLMs to generate review time series. Second, we construct a space mapping mechanism with multiple chaotic attributes, embracing the intrinsic attributes of reviews. Finally, we design a hierarchical learning network that trains in deep contrastive learning across LLM layers, chaotic attribute layers, and Transformer layers. Extensive experiments demonstrate that LLMChaos is robust and state-of-the-art. For instance, on the Hotel dataset, LLMChaos achieves 94.78% F1, outperforming recent models by 1.42%-19.78%; on the Amazon dataset, LLMChaos achieves 93.15% F1, surpassing recent models by 1.45%-18.39%. Moreover, we contribute novel discoveries, for example, chaotic behaviors of reviews generally exhibit bounded ranges: Lyapunov exponent (0–0.0125), Correlation dimension (0.25–0.5), Kolmogorov entropy (0.75–0.85), Fractal spectrum (0–1.5), and Recurrence rate (0.005–0.015); real and fake reviews display distinct chaotic distributions.</div></div>\",\"PeriodicalId\":50541,\"journal\":{\"name\":\"Electronic Commerce Research and Applications\",\"volume\":\"73 \",\"pages\":\"Article 101521\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Commerce Research and Applications\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567422325000468\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Commerce Research and Applications","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567422325000468","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

检测虚假在线评论对电子商务生态系统至关重要。然而,现有的研究往往不能挖掘评论的内在属性,这限制了检测的性能。本文介绍了一种新的假评论检测模型LLMChaos,该模型从大语言模型(llm)和混沌理论的角度来研究评论。具体而言,我们首先提出了一种将能量选择与llm相结合的方法来生成复习时间序列。其次,我们构建了包含评论内在属性的多混沌属性空间映射机制。最后,我们设计了一个分层学习网络,在LLM层、混沌属性层和Transformer层之间进行深度对比学习训练。大量的实验表明,LLMChaos是鲁棒性和最先进的。例如,在酒店数据集上,LLMChaos达到了94.78%的F1,比最近的模型高出1.42%-19.78%;在Amazon数据集上,LLMChaos达到了93.15%的F1,比最近的模型高出1.45%-18.39%。此外,我们还做出了一些新的发现,例如评论的混沌行为通常表现出有限的范围:Lyapunov指数(0-0.0125)、相关维数(0.25-0.5)、Kolmogorov熵(0.75-0.85)、分形谱(0-1.5)和复发率(0.005-0.015);真实评论和虚假评论呈现出明显的混乱分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large language model meets chaos: A new deep learning model for fake review detection
Detecting fake online reviews is crucial for the e-commerce ecosystem. However, existing studies often fail to mine the intrinsic attributes of reviews, which limits detection performance. In this paper, we introduce a novel fake review detection model, LLMChaos, which investigates reviews from the perspectives of large language models (LLMs) and chaos theory. Specifically, we first propose a method that blends energy selection with LLMs to generate review time series. Second, we construct a space mapping mechanism with multiple chaotic attributes, embracing the intrinsic attributes of reviews. Finally, we design a hierarchical learning network that trains in deep contrastive learning across LLM layers, chaotic attribute layers, and Transformer layers. Extensive experiments demonstrate that LLMChaos is robust and state-of-the-art. For instance, on the Hotel dataset, LLMChaos achieves 94.78% F1, outperforming recent models by 1.42%-19.78%; on the Amazon dataset, LLMChaos achieves 93.15% F1, surpassing recent models by 1.45%-18.39%. Moreover, we contribute novel discoveries, for example, chaotic behaviors of reviews generally exhibit bounded ranges: Lyapunov exponent (0–0.0125), Correlation dimension (0.25–0.5), Kolmogorov entropy (0.75–0.85), Fractal spectrum (0–1.5), and Recurrence rate (0.005–0.015); real and fake reviews display distinct chaotic distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Commerce Research and Applications
Electronic Commerce Research and Applications 工程技术-计算机:跨学科应用
CiteScore
10.10
自引率
8.30%
发文量
97
审稿时长
63 days
期刊介绍: Electronic Commerce Research and Applications aims to create and disseminate enduring knowledge for the fast-changing e-commerce environment. A major dilemma in e-commerce research is how to achieve a balance between the currency and the life span of knowledge. Electronic Commerce Research and Applications will contribute to the establishment of a research community to create the knowledge, technology, theory, and applications for the development of electronic commerce. This is targeted at the intersection of technological potential and business aims.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信