Thuan Ho-Nguyen-Tan, Gonui Hong, Anand Prakash Jaiswal, Yuna Oh, Kwak Jin Bae, Jaesang Yu, Minkook Kim, Soon Ho Yoon
{"title":"纤维变形对层叠风扇叶片结构弯曲变形的影响:数值与实验研究","authors":"Thuan Ho-Nguyen-Tan, Gonui Hong, Anand Prakash Jaiswal, Yuna Oh, Kwak Jin Bae, Jaesang Yu, Minkook Kim, Soon Ho Yoon","doi":"10.1016/j.compositesb.2025.112670","DOIUrl":null,"url":null,"abstract":"<div><div>Modeling and manufacturing have always been major challenges in the design of multilayered composite structures. This study introduces a novel modeling technique for the laminated fan blade structure using exact shell models. In the lamination design, iso-contours of the thickness function are used to define ply-shape code topologies with smooth geometric features. To achieve this, the marching squares algorithm is employed to determine intersections between the base mid-shell model and the target function. This lamination design facilitates both the numerical simulation and fabrication stages. Three laminated fan blades with different ply-stacking sequences of <span><math><mrow><mo>(</mo><mo>−</mo><mn>6</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>,</mo><mn>3</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>)</mo></mrow></math></span>, <span><math><mrow><mo>(</mo><mo>−</mo><mn>4</mn><msup><mrow><mn>5</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>,</mo><mn>4</mn><msup><mrow><mn>5</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>)</mo></mrow></math></span>, and <span><math><mrow><mo>(</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>,</mo><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>)</mo></mrow></math></span> are used for this study. In addition, the fiber-draping analysis is employed to predict changes in fiber orientations caused by the geometric curvatures and twists of the structure. Numerical simulation highlights the significant impact of the fiber distortion on the bending deformation of laminated fan blade structures. Through result comparison, numerical findings incorporating fiber-draping analysis show excellent alignment with experimental measurements.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"305 ","pages":"Article 112670"},"PeriodicalIF":14.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fiber distortion impact on the bending deformation of laminated fan blade structures: A numerical and experimental study\",\"authors\":\"Thuan Ho-Nguyen-Tan, Gonui Hong, Anand Prakash Jaiswal, Yuna Oh, Kwak Jin Bae, Jaesang Yu, Minkook Kim, Soon Ho Yoon\",\"doi\":\"10.1016/j.compositesb.2025.112670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Modeling and manufacturing have always been major challenges in the design of multilayered composite structures. This study introduces a novel modeling technique for the laminated fan blade structure using exact shell models. In the lamination design, iso-contours of the thickness function are used to define ply-shape code topologies with smooth geometric features. To achieve this, the marching squares algorithm is employed to determine intersections between the base mid-shell model and the target function. This lamination design facilitates both the numerical simulation and fabrication stages. Three laminated fan blades with different ply-stacking sequences of <span><math><mrow><mo>(</mo><mo>−</mo><mn>6</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>,</mo><mn>3</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>)</mo></mrow></math></span>, <span><math><mrow><mo>(</mo><mo>−</mo><mn>4</mn><msup><mrow><mn>5</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>,</mo><mn>4</mn><msup><mrow><mn>5</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>)</mo></mrow></math></span>, and <span><math><mrow><mo>(</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>,</mo><mn>9</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>∘</mo></mrow></msup><mo>)</mo></mrow></math></span> are used for this study. In addition, the fiber-draping analysis is employed to predict changes in fiber orientations caused by the geometric curvatures and twists of the structure. Numerical simulation highlights the significant impact of the fiber distortion on the bending deformation of laminated fan blade structures. Through result comparison, numerical findings incorporating fiber-draping analysis show excellent alignment with experimental measurements.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"305 \",\"pages\":\"Article 112670\"},\"PeriodicalIF\":14.2000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836825005712\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825005712","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Fiber distortion impact on the bending deformation of laminated fan blade structures: A numerical and experimental study
Modeling and manufacturing have always been major challenges in the design of multilayered composite structures. This study introduces a novel modeling technique for the laminated fan blade structure using exact shell models. In the lamination design, iso-contours of the thickness function are used to define ply-shape code topologies with smooth geometric features. To achieve this, the marching squares algorithm is employed to determine intersections between the base mid-shell model and the target function. This lamination design facilitates both the numerical simulation and fabrication stages. Three laminated fan blades with different ply-stacking sequences of , , and are used for this study. In addition, the fiber-draping analysis is employed to predict changes in fiber orientations caused by the geometric curvatures and twists of the structure. Numerical simulation highlights the significant impact of the fiber distortion on the bending deformation of laminated fan blade structures. Through result comparison, numerical findings incorporating fiber-draping analysis show excellent alignment with experimental measurements.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.