{"title":"重新访问了尾约简自由项重写系统","authors":"Sándor Vágvölgyi","doi":"10.1016/j.jsc.2025.102474","DOIUrl":null,"url":null,"abstract":"<div><div>First we present various undecidability results on numerous subclasses of tail reduction free term rewriting systems which simply follow from the literature review on term rewriting. Then we show that the following problems are undecidable for linear tail reduction free term rewriting systems: the word problem, the existence of normal forms problem, the common ancestor problem, the joinability problem, the normalizing problem, the termination problem, the convergence problem, the reflexive transitive closure of reduction relation inclusion problem, the reflexive transitive closure of reduction relation equality problem, and the reflexive transitive closure of reduction relation proper inclusion problem. Finally, we show that the following problems are undecidable for right-linear trf TRSs: the inductive problem, the congruence relation inclusion problem, the congruence relation equality problem, and the congruence relation proper inclusion problem. In addition, we show that the restrictions of all the problems to ground terms are also undecidable.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"132 ","pages":"Article 102474"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tail reduction free term rewriting systems revisited\",\"authors\":\"Sándor Vágvölgyi\",\"doi\":\"10.1016/j.jsc.2025.102474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>First we present various undecidability results on numerous subclasses of tail reduction free term rewriting systems which simply follow from the literature review on term rewriting. Then we show that the following problems are undecidable for linear tail reduction free term rewriting systems: the word problem, the existence of normal forms problem, the common ancestor problem, the joinability problem, the normalizing problem, the termination problem, the convergence problem, the reflexive transitive closure of reduction relation inclusion problem, the reflexive transitive closure of reduction relation equality problem, and the reflexive transitive closure of reduction relation proper inclusion problem. Finally, we show that the following problems are undecidable for right-linear trf TRSs: the inductive problem, the congruence relation inclusion problem, the congruence relation equality problem, and the congruence relation proper inclusion problem. In addition, we show that the restrictions of all the problems to ground terms are also undecidable.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"132 \",\"pages\":\"Article 102474\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717125000562\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000562","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Tail reduction free term rewriting systems revisited
First we present various undecidability results on numerous subclasses of tail reduction free term rewriting systems which simply follow from the literature review on term rewriting. Then we show that the following problems are undecidable for linear tail reduction free term rewriting systems: the word problem, the existence of normal forms problem, the common ancestor problem, the joinability problem, the normalizing problem, the termination problem, the convergence problem, the reflexive transitive closure of reduction relation inclusion problem, the reflexive transitive closure of reduction relation equality problem, and the reflexive transitive closure of reduction relation proper inclusion problem. Finally, we show that the following problems are undecidable for right-linear trf TRSs: the inductive problem, the congruence relation inclusion problem, the congruence relation equality problem, and the congruence relation proper inclusion problem. In addition, we show that the restrictions of all the problems to ground terms are also undecidable.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.