具有ii型异质结的静电组装Cu2O/TiO2纳米复合材料增强光催化CO2甲烷化

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiali Tang, Lipeng Wang, Guobing Mao*, Rui Wang, Waqar Younas, Tiantian Zong, Jianyong Huang and Qi Liu*, 
{"title":"具有ii型异质结的静电组装Cu2O/TiO2纳米复合材料增强光催化CO2甲烷化","authors":"Jiali Tang,&nbsp;Lipeng Wang,&nbsp;Guobing Mao*,&nbsp;Rui Wang,&nbsp;Waqar Younas,&nbsp;Tiantian Zong,&nbsp;Jianyong Huang and Qi Liu*,&nbsp;","doi":"10.1021/acsanm.5c0187810.1021/acsanm.5c01878","DOIUrl":null,"url":null,"abstract":"<p >A Cu<sub>2</sub>O/TiO<sub>2</sub> nanocomposite type-II heterojunction was constructed through electrostatic self-assembly, achieving a visible-light-driven CH<sub>4</sub> production rate of 34.13 μmol g<sup>–1</sup> h<sup>–1</sup>, which is 43.85 and 2.39 times higher than that of Cu<sub>2</sub>O nanocubes and TiO<sub>2</sub> nanoparticles, respectively. The enhanced activity can be attributed to several synergistic effects: (1) an increased surface area of 71.2 m<sup>2</sup> g<sup>−1</sup> for CO<sub>2</sub> adsorption, (2) a broadened absorption spectrum in the visible light range, and (3) efficient interfacial electron transfer that suppresses recombination. This energy-efficient synthesis method circumvents the need for high-temperature calcination, thereby providing a scalable solution for industrial CO<sub>2</sub> photoreduction.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 23","pages":"11769–11773 11769–11773"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrostatically Assembled Cu2O/TiO2 Nanocomposite with Type-II Heterojunctions for Enhanced Photocatalytic CO2 Methanation\",\"authors\":\"Jiali Tang,&nbsp;Lipeng Wang,&nbsp;Guobing Mao*,&nbsp;Rui Wang,&nbsp;Waqar Younas,&nbsp;Tiantian Zong,&nbsp;Jianyong Huang and Qi Liu*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c0187810.1021/acsanm.5c01878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A Cu<sub>2</sub>O/TiO<sub>2</sub> nanocomposite type-II heterojunction was constructed through electrostatic self-assembly, achieving a visible-light-driven CH<sub>4</sub> production rate of 34.13 μmol g<sup>–1</sup> h<sup>–1</sup>, which is 43.85 and 2.39 times higher than that of Cu<sub>2</sub>O nanocubes and TiO<sub>2</sub> nanoparticles, respectively. The enhanced activity can be attributed to several synergistic effects: (1) an increased surface area of 71.2 m<sup>2</sup> g<sup>−1</sup> for CO<sub>2</sub> adsorption, (2) a broadened absorption spectrum in the visible light range, and (3) efficient interfacial electron transfer that suppresses recombination. This energy-efficient synthesis method circumvents the need for high-temperature calcination, thereby providing a scalable solution for industrial CO<sub>2</sub> photoreduction.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 23\",\"pages\":\"11769–11773 11769–11773\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c01878\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c01878","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过静电自组装构建Cu2O/TiO2纳米复合材料ii型异质结,实现了可见光驱动CH4产率为34.13 μmol g-1 h-1,分别是Cu2O纳米立方和TiO2纳米颗粒产率的43.85和2.39倍。活性的增强可归因于几种协同效应:(1)CO2吸附表面积增加了71.2 m2 g−1,(2)可见光范围内的吸收光谱变宽,(3)有效的界面电子转移抑制了重组。这种节能的合成方法避免了高温煅烧的需要,从而为工业二氧化碳光还原提供了可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrostatically Assembled Cu2O/TiO2 Nanocomposite with Type-II Heterojunctions for Enhanced Photocatalytic CO2 Methanation

Electrostatically Assembled Cu2O/TiO2 Nanocomposite with Type-II Heterojunctions for Enhanced Photocatalytic CO2 Methanation

A Cu2O/TiO2 nanocomposite type-II heterojunction was constructed through electrostatic self-assembly, achieving a visible-light-driven CH4 production rate of 34.13 μmol g–1 h–1, which is 43.85 and 2.39 times higher than that of Cu2O nanocubes and TiO2 nanoparticles, respectively. The enhanced activity can be attributed to several synergistic effects: (1) an increased surface area of 71.2 m2 g−1 for CO2 adsorption, (2) a broadened absorption spectrum in the visible light range, and (3) efficient interfacial electron transfer that suppresses recombination. This energy-efficient synthesis method circumvents the need for high-temperature calcination, thereby providing a scalable solution for industrial CO2 photoreduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信