用于高性能外部超级电容器的2D钒铝碳化物(V4AlC3)衬底上的3D花瓣状cocr层状双氢氧化物

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Vivek Mohan More, Chang-Min Yoon, Jeoung Han Kim and Jinsung Rho*, 
{"title":"用于高性能外部超级电容器的2D钒铝碳化物(V4AlC3)衬底上的3D花瓣状cocr层状双氢氧化物","authors":"Vivek Mohan More,&nbsp;Chang-Min Yoon,&nbsp;Jeoung Han Kim and Jinsung Rho*,&nbsp;","doi":"10.1021/acsanm.4c0733910.1021/acsanm.4c07339","DOIUrl":null,"url":null,"abstract":"<p >The uniquely integrated hybrid material, constituting of three-dimensional (3D) flower-petal-like CoCr-layered double hydroxides hybridized with a multilayered two-dimensional (2D) vanadium aluminum carbide (V<sub>4</sub>AlC<sub>3</sub>) substrate, by preserving the properties of each component owing to a synergistic effect, thereby improving the electrochemical performance. Herein, we have synthesized 3D flower-petal-like CoCr-LDH on a 2D V<sub>4</sub>AlC<sub>3</sub> substrate nanocomposite via a hydrothermal synthesis route. The optimized CCVM-40 nanocomposite electrode exhibited hybrid charge storage with well-balanced capacitive performance, high rate capability, and charge transport as compared to CoCr-LDH. The nanocomposite of CoCr-LDH and V<sub>4</sub>AlC<sub>3</sub> MAX can significantly enhance the electrochemical performance of pristine CoCr-LDH. The CoCr-LDH/V<sub>4</sub>AlC<sub>3</sub> MAX nanocomposite displays a high specific surface area, an interconnected porous organ-like morphology, and intimate coupling between LDH nanosheets and the 2D layered V<sub>4</sub>AlC<sub>3</sub> MAX. This unique architecture, along with strong interfacial interactions and synergistic effects between the layered V<sub>4</sub>AlC<sub>3</sub> MAX and CoCr-LDH nanosheets, greatly improves electrical conductivity and increases the number of active sites accessible to the electrolyte. Moreover, the hybrid nanostructured composite prevents self-aggregation and restacking of the CoCr-LDH nanosheets onto V<sub>4</sub>AlC<sub>3</sub> MAX, thereby assuring complete exposure of the active sites. The CCVM-40 nanocomposite demonstrates an excellent specific capacitance of 1375.9 F g<sup>–1</sup> at a scan rate of 2 mV s<sup>–1</sup>, attributed to its unique hybrid nanostructure. Furthermore, the solid-state hybrid supercapacitor, fabricated using CCVM-40 as the battery-type electrode and activated carbon as the capacitive electrode, achieves a notable energy density of 85.41 W h kg<sup>–1</sup> at a power density of 1.1 kW kg<sup>–1</sup>. Additionally, the hybrid supercapacitor device exhibits an outstanding capacitance retention rate of 90.8% after 8000 cycles at a current density of 6 A g<sup>–1</sup>. Hence, it can be deduced from these exceptional results that additional research into these promising nanostructures with their excellent charge storage capabilities and unique microstructural traits is necessary for the development of next-generation energy storage devices.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 23","pages":"11774–11785 11774–11785"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Flower-Petal-like CoCr-Layered Double Hydroxides Anchored on a 2D Vanadium Aluminum Carbide (V4AlC3) Substrate for High-Performance Extrinsic Supercapacitors\",\"authors\":\"Vivek Mohan More,&nbsp;Chang-Min Yoon,&nbsp;Jeoung Han Kim and Jinsung Rho*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0733910.1021/acsanm.4c07339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The uniquely integrated hybrid material, constituting of three-dimensional (3D) flower-petal-like CoCr-layered double hydroxides hybridized with a multilayered two-dimensional (2D) vanadium aluminum carbide (V<sub>4</sub>AlC<sub>3</sub>) substrate, by preserving the properties of each component owing to a synergistic effect, thereby improving the electrochemical performance. Herein, we have synthesized 3D flower-petal-like CoCr-LDH on a 2D V<sub>4</sub>AlC<sub>3</sub> substrate nanocomposite via a hydrothermal synthesis route. The optimized CCVM-40 nanocomposite electrode exhibited hybrid charge storage with well-balanced capacitive performance, high rate capability, and charge transport as compared to CoCr-LDH. The nanocomposite of CoCr-LDH and V<sub>4</sub>AlC<sub>3</sub> MAX can significantly enhance the electrochemical performance of pristine CoCr-LDH. The CoCr-LDH/V<sub>4</sub>AlC<sub>3</sub> MAX nanocomposite displays a high specific surface area, an interconnected porous organ-like morphology, and intimate coupling between LDH nanosheets and the 2D layered V<sub>4</sub>AlC<sub>3</sub> MAX. This unique architecture, along with strong interfacial interactions and synergistic effects between the layered V<sub>4</sub>AlC<sub>3</sub> MAX and CoCr-LDH nanosheets, greatly improves electrical conductivity and increases the number of active sites accessible to the electrolyte. Moreover, the hybrid nanostructured composite prevents self-aggregation and restacking of the CoCr-LDH nanosheets onto V<sub>4</sub>AlC<sub>3</sub> MAX, thereby assuring complete exposure of the active sites. The CCVM-40 nanocomposite demonstrates an excellent specific capacitance of 1375.9 F g<sup>–1</sup> at a scan rate of 2 mV s<sup>–1</sup>, attributed to its unique hybrid nanostructure. Furthermore, the solid-state hybrid supercapacitor, fabricated using CCVM-40 as the battery-type electrode and activated carbon as the capacitive electrode, achieves a notable energy density of 85.41 W h kg<sup>–1</sup> at a power density of 1.1 kW kg<sup>–1</sup>. Additionally, the hybrid supercapacitor device exhibits an outstanding capacitance retention rate of 90.8% after 8000 cycles at a current density of 6 A g<sup>–1</sup>. Hence, it can be deduced from these exceptional results that additional research into these promising nanostructures with their excellent charge storage capabilities and unique microstructural traits is necessary for the development of next-generation energy storage devices.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 23\",\"pages\":\"11774–11785 11774–11785\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c07339\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c07339","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这种独特的集成杂化材料由三维(3D)花瓣状cocr层状双氢氧化物与多层二维(2D)碳化钒铝(V4AlC3)衬底杂交而成,通过协同效应保留了每个组分的特性,从而提高了电化学性能。本文采用水热合成的方法,在二维V4AlC3衬底纳米复合材料上合成了三维花瓣状CoCr-LDH。与CoCr-LDH相比,优化后的CCVM-40纳米复合电极具有电容性能均衡、高倍率和电荷输运的混合电荷存储性能。CoCr-LDH与V4AlC3 MAX的纳米复合材料可以显著提高原始CoCr-LDH的电化学性能。CoCr-LDH/V4AlC3 MAX纳米复合材料具有高比表面积、相互连接的多孔器官样形态以及LDH纳米片与二维层状V4AlC3 MAX之间的紧密耦合。这种独特的结构,以及层状V4AlC3 MAX和CoCr-LDH纳米片之间强大的界面相互作用和协同效应,极大地提高了电导率,增加了电解质可接近的活性位点的数量。此外,混合纳米结构复合材料防止CoCr-LDH纳米片在V4AlC3 MAX上自聚集和重新堆积,从而确保活性位点的完全暴露。CCVM-40纳米复合材料由于其独特的杂化纳米结构,在2 mV s-1扫描速率下具有1375.9 F - 1的优异比电容。此外,以CCVM-40为电池型电极,活性炭为电容电极制备的固态混合超级电容器在1.1 kW kg-1的功率密度下获得了85.41 W h kg-1的能量密度。此外,在6 a g-1电流密度下,混合超级电容器器件在8000次循环后的电容保持率为90.8%。因此,从这些非凡的结果可以推断,对这些具有优异电荷存储能力和独特微观结构特征的有前途的纳米结构进行进一步的研究对于开发下一代能量存储设备是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Flower-Petal-like CoCr-Layered Double Hydroxides Anchored on a 2D Vanadium Aluminum Carbide (V4AlC3) Substrate for High-Performance Extrinsic Supercapacitors

The uniquely integrated hybrid material, constituting of three-dimensional (3D) flower-petal-like CoCr-layered double hydroxides hybridized with a multilayered two-dimensional (2D) vanadium aluminum carbide (V4AlC3) substrate, by preserving the properties of each component owing to a synergistic effect, thereby improving the electrochemical performance. Herein, we have synthesized 3D flower-petal-like CoCr-LDH on a 2D V4AlC3 substrate nanocomposite via a hydrothermal synthesis route. The optimized CCVM-40 nanocomposite electrode exhibited hybrid charge storage with well-balanced capacitive performance, high rate capability, and charge transport as compared to CoCr-LDH. The nanocomposite of CoCr-LDH and V4AlC3 MAX can significantly enhance the electrochemical performance of pristine CoCr-LDH. The CoCr-LDH/V4AlC3 MAX nanocomposite displays a high specific surface area, an interconnected porous organ-like morphology, and intimate coupling between LDH nanosheets and the 2D layered V4AlC3 MAX. This unique architecture, along with strong interfacial interactions and synergistic effects between the layered V4AlC3 MAX and CoCr-LDH nanosheets, greatly improves electrical conductivity and increases the number of active sites accessible to the electrolyte. Moreover, the hybrid nanostructured composite prevents self-aggregation and restacking of the CoCr-LDH nanosheets onto V4AlC3 MAX, thereby assuring complete exposure of the active sites. The CCVM-40 nanocomposite demonstrates an excellent specific capacitance of 1375.9 F g–1 at a scan rate of 2 mV s–1, attributed to its unique hybrid nanostructure. Furthermore, the solid-state hybrid supercapacitor, fabricated using CCVM-40 as the battery-type electrode and activated carbon as the capacitive electrode, achieves a notable energy density of 85.41 W h kg–1 at a power density of 1.1 kW kg–1. Additionally, the hybrid supercapacitor device exhibits an outstanding capacitance retention rate of 90.8% after 8000 cycles at a current density of 6 A g–1. Hence, it can be deduced from these exceptional results that additional research into these promising nanostructures with their excellent charge storage capabilities and unique microstructural traits is necessary for the development of next-generation energy storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信