CuInSe2量子点嵌入Bi2WO6纳米片电催化氮还原

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuanming Mu, Qiang Hu, Yuyao Ji* and Xingquan Liu*, 
{"title":"CuInSe2量子点嵌入Bi2WO6纳米片电催化氮还原","authors":"Yuanming Mu,&nbsp;Qiang Hu,&nbsp;Yuyao Ji* and Xingquan Liu*,&nbsp;","doi":"10.1021/acsanm.5c0252510.1021/acsanm.5c02525","DOIUrl":null,"url":null,"abstract":"<p >For hundreds of years, ammonia has been an important raw material for industrial production worldwide. At present, the electrocatalytic nitrogen reduction reaction (NRR) has become a very attractive and promising method for NH<sub>3</sub> synthesis. But due to the high bond energy and strong dipole moment of the N≡N bond in nitrogen gas, it is extremely difficult to decompose. At normal temperature and pressure, the reaction kinetics of the NRR is still relatively slow. Herein, CuInSe<sub>2</sub> quantum dots (CuInSe<sub>2</sub>-QDs) are highly dispersed on the surface of Bi<sub>2</sub>WO<sub>6</sub> nanosheets to form p–n heterojunctions, which can effectively increase the reaction rate of NRR. As a result, CuInSe<sub>2</sub> QDs-Bi<sub>2</sub>WO<sub>6</sub> exhibit a high yield rate of 36.1 μg h<sup>–1</sup> mg<sub>cat</sub><sup>–1</sup> and NH<sub>3</sub> Faradaic efficiency of 9.3%, which is superior to the pristine Bi<sub>2</sub>WO<sub>6</sub> (9.1 μg h<sup>–1</sup> mg<sub>cat</sub><sup>–1</sup> 5.1%) under neutral solution. CuInSe<sub>2</sub> QDs-Bi<sub>2</sub>WO<sub>6</sub> also shows good electrochemical stability. This work provides a promising solution for designing NRR catalysts and may also open up paths for the preparation of intrinsic heterostructures.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 23","pages":"12423–12428 12423–12428"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CuInSe2 Quantum Dots Embedded in Bi2WO6 Nanosheets for Electrocatalytic Nitrogen Reduction\",\"authors\":\"Yuanming Mu,&nbsp;Qiang Hu,&nbsp;Yuyao Ji* and Xingquan Liu*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c0252510.1021/acsanm.5c02525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >For hundreds of years, ammonia has been an important raw material for industrial production worldwide. At present, the electrocatalytic nitrogen reduction reaction (NRR) has become a very attractive and promising method for NH<sub>3</sub> synthesis. But due to the high bond energy and strong dipole moment of the N≡N bond in nitrogen gas, it is extremely difficult to decompose. At normal temperature and pressure, the reaction kinetics of the NRR is still relatively slow. Herein, CuInSe<sub>2</sub> quantum dots (CuInSe<sub>2</sub>-QDs) are highly dispersed on the surface of Bi<sub>2</sub>WO<sub>6</sub> nanosheets to form p–n heterojunctions, which can effectively increase the reaction rate of NRR. As a result, CuInSe<sub>2</sub> QDs-Bi<sub>2</sub>WO<sub>6</sub> exhibit a high yield rate of 36.1 μg h<sup>–1</sup> mg<sub>cat</sub><sup>–1</sup> and NH<sub>3</sub> Faradaic efficiency of 9.3%, which is superior to the pristine Bi<sub>2</sub>WO<sub>6</sub> (9.1 μg h<sup>–1</sup> mg<sub>cat</sub><sup>–1</sup> 5.1%) under neutral solution. CuInSe<sub>2</sub> QDs-Bi<sub>2</sub>WO<sub>6</sub> also shows good electrochemical stability. This work provides a promising solution for designing NRR catalysts and may also open up paths for the preparation of intrinsic heterostructures.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 23\",\"pages\":\"12423–12428 12423–12428\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c02525\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c02525","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

几百年来,氨一直是世界范围内工业生产的重要原料。目前,电催化氮还原反应(NRR)已成为一种极具吸引力和前景的氨合成方法。但由于氮气中N≡N键的键能高,偶极矩强,分解极为困难。在常温常压下,NRR的反应动力学仍然比较缓慢。其中,CuInSe2量子点(CuInSe2- qds)高度分散在Bi2WO6纳米片表面形成p-n异质结,可以有效提高NRR的反应速率。结果表明,CuInSe2 QDs-Bi2WO6在中性溶液下的产率为36.1 μg h-1 mgcat-1, NH3的法拉第效率为9.3%,优于原始Bi2WO6 (9.1 μg h-1 mgcat-1 5.1%)。CuInSe2 QDs-Bi2WO6也表现出良好的电化学稳定性。这项工作为设计NRR催化剂提供了一个有希望的解决方案,也可能为制备本征异质结构开辟了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CuInSe2 Quantum Dots Embedded in Bi2WO6 Nanosheets for Electrocatalytic Nitrogen Reduction

For hundreds of years, ammonia has been an important raw material for industrial production worldwide. At present, the electrocatalytic nitrogen reduction reaction (NRR) has become a very attractive and promising method for NH3 synthesis. But due to the high bond energy and strong dipole moment of the N≡N bond in nitrogen gas, it is extremely difficult to decompose. At normal temperature and pressure, the reaction kinetics of the NRR is still relatively slow. Herein, CuInSe2 quantum dots (CuInSe2-QDs) are highly dispersed on the surface of Bi2WO6 nanosheets to form p–n heterojunctions, which can effectively increase the reaction rate of NRR. As a result, CuInSe2 QDs-Bi2WO6 exhibit a high yield rate of 36.1 μg h–1 mgcat–1 and NH3 Faradaic efficiency of 9.3%, which is superior to the pristine Bi2WO6 (9.1 μg h–1 mgcat–1 5.1%) under neutral solution. CuInSe2 QDs-Bi2WO6 also shows good electrochemical stability. This work provides a promising solution for designing NRR catalysts and may also open up paths for the preparation of intrinsic heterostructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信