Anjali K. Sajeev, Kavya Rajeev and K. N. Narayanan Unni*,
{"title":"无铅卤化铜led:利用纳米级工艺控制前驱体共蒸发的器件工程实现性能跨越式发展","authors":"Anjali K. Sajeev, Kavya Rajeev and K. N. Narayanan Unni*, ","doi":"10.1021/acsanm.5c0125210.1021/acsanm.5c01252","DOIUrl":null,"url":null,"abstract":"<p >Lead-free copper halide light-emitting diodes (LEDs) have emerged as a promising alternative to perovskite LEDs, particularly in the context of environmental challenges. This study investigates the performance enhancement of cesium copper iodide (CsCu<sub>2</sub>I<sub>3</sub>) LEDs through device engineering techniques, including precursor coevaporation, cohost engineering, and process optimization. Coevaporation of cesium iodide (CsI) and copper iodide (CuI) offers better control over film composition compared with conventional techniques such as wet chemical synthesis or solution processing, thereby simplifying the device fabrication. This dry deposition method minimizes issues related to solvent residues and simplifies the fabrication process. Incorporating the cohosts, 1,3,5-tri(m-pyridin-3-ylphenyl)benzene (TmPyPB) and 4,4’,4-tris(carbazol-9-yl)triphenylamine (TcTa), in the emissive layer improves charge balancing and film formation, enhancing overall performance. The optimal results were achieved with a 6:1 cohost ratio and a 2.5% CsCu<sub>2</sub>I<sub>3</sub> doping ratio, resulting in a maximum luminance of 6278 cd/m<sup>2</sup>, a current efficiency (CE) of 4.14 cd/A, a power efficiency (PE) of 1.22 lm/W, and an external quantum efficiency (EQE) of 1.44%. The substrate temperature of 60 °C further influenced device performance, with almost 50% improvement in EQE, reaching 2.14%. The device improvements are a result of the nanoscale control over film morphology, composition, and interface quality enabled using controlled coevaporation. Overall, this study highlights the potential of coevaporation of precursors with cohosts and the benefits of substrate temperature in fabricating high-performance and stable CsCu<sub>2</sub>I<sub>3</sub>-based LEDs.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 23","pages":"11896–11905 11896–11905"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lead-Free Copper Halide LEDs: Leapfrogging in Performance with Device Engineering Employing Coevaporation of Precursors with Nanoscale Process Control\",\"authors\":\"Anjali K. Sajeev, Kavya Rajeev and K. N. Narayanan Unni*, \",\"doi\":\"10.1021/acsanm.5c0125210.1021/acsanm.5c01252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lead-free copper halide light-emitting diodes (LEDs) have emerged as a promising alternative to perovskite LEDs, particularly in the context of environmental challenges. This study investigates the performance enhancement of cesium copper iodide (CsCu<sub>2</sub>I<sub>3</sub>) LEDs through device engineering techniques, including precursor coevaporation, cohost engineering, and process optimization. Coevaporation of cesium iodide (CsI) and copper iodide (CuI) offers better control over film composition compared with conventional techniques such as wet chemical synthesis or solution processing, thereby simplifying the device fabrication. This dry deposition method minimizes issues related to solvent residues and simplifies the fabrication process. Incorporating the cohosts, 1,3,5-tri(m-pyridin-3-ylphenyl)benzene (TmPyPB) and 4,4’,4-tris(carbazol-9-yl)triphenylamine (TcTa), in the emissive layer improves charge balancing and film formation, enhancing overall performance. The optimal results were achieved with a 6:1 cohost ratio and a 2.5% CsCu<sub>2</sub>I<sub>3</sub> doping ratio, resulting in a maximum luminance of 6278 cd/m<sup>2</sup>, a current efficiency (CE) of 4.14 cd/A, a power efficiency (PE) of 1.22 lm/W, and an external quantum efficiency (EQE) of 1.44%. The substrate temperature of 60 °C further influenced device performance, with almost 50% improvement in EQE, reaching 2.14%. The device improvements are a result of the nanoscale control over film morphology, composition, and interface quality enabled using controlled coevaporation. Overall, this study highlights the potential of coevaporation of precursors with cohosts and the benefits of substrate temperature in fabricating high-performance and stable CsCu<sub>2</sub>I<sub>3</sub>-based LEDs.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 23\",\"pages\":\"11896–11905 11896–11905\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c01252\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c01252","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Lead-Free Copper Halide LEDs: Leapfrogging in Performance with Device Engineering Employing Coevaporation of Precursors with Nanoscale Process Control
Lead-free copper halide light-emitting diodes (LEDs) have emerged as a promising alternative to perovskite LEDs, particularly in the context of environmental challenges. This study investigates the performance enhancement of cesium copper iodide (CsCu2I3) LEDs through device engineering techniques, including precursor coevaporation, cohost engineering, and process optimization. Coevaporation of cesium iodide (CsI) and copper iodide (CuI) offers better control over film composition compared with conventional techniques such as wet chemical synthesis or solution processing, thereby simplifying the device fabrication. This dry deposition method minimizes issues related to solvent residues and simplifies the fabrication process. Incorporating the cohosts, 1,3,5-tri(m-pyridin-3-ylphenyl)benzene (TmPyPB) and 4,4’,4-tris(carbazol-9-yl)triphenylamine (TcTa), in the emissive layer improves charge balancing and film formation, enhancing overall performance. The optimal results were achieved with a 6:1 cohost ratio and a 2.5% CsCu2I3 doping ratio, resulting in a maximum luminance of 6278 cd/m2, a current efficiency (CE) of 4.14 cd/A, a power efficiency (PE) of 1.22 lm/W, and an external quantum efficiency (EQE) of 1.44%. The substrate temperature of 60 °C further influenced device performance, with almost 50% improvement in EQE, reaching 2.14%. The device improvements are a result of the nanoscale control over film morphology, composition, and interface quality enabled using controlled coevaporation. Overall, this study highlights the potential of coevaporation of precursors with cohosts and the benefits of substrate temperature in fabricating high-performance and stable CsCu2I3-based LEDs.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.