Taoqing He, Yawen Yin, XingXing Li, Lei Zhu, Zhaozhu Zheng, Gang Li, Xiaoqin Wang* and David L. Kaplan,
{"title":"碳酸酐酶整合丝水凝胶用于微藻生长和固碳","authors":"Taoqing He, Yawen Yin, XingXing Li, Lei Zhu, Zhaozhu Zheng, Gang Li, Xiaoqin Wang* and David L. Kaplan, ","doi":"10.1021/acsestengg.4c0083110.1021/acsestengg.4c00831","DOIUrl":null,"url":null,"abstract":"<p >Microalgae can capture CO<sub>2</sub> from the air and convert it into biomass and valuable byproducts, positioning these organisms as the key in terms of sustainable carbon fixation technologies. However, cultivating microalgae efficiently and cost-effectively remains a significant challenge. In this study, we enhanced the cultivation of microalgal cells within a silk/alginate hydrogel, shielded by CO<sub>2</sub> adsorption/desorption functional fabrics, to generate an innovative sandwich-structured composite system. Additionally, carbonic anhydrase-encapsulated silk fibroin nanoparticles were synthesized and co-embedded with the microalgae in the hydrogel. This silk-based microencapsulation sustained enzymatic activity, improving the conversion of CO<sub>2</sub> to bicarbonate and providing vital inorganic carbon for microalgal growth. The integration of microchannels within the gel facilitated continuous flow of culture medium via a microinjection pump, addressing nutrient deficiencies during prolonged exposure to air. Our findings indicate that microalgae cultivated in this system exhibit a significantly higher growth rate and carbon fixation rate compared to control setups, highlighting their potential as a carbon fixation system.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 6","pages":"1373–1384 1373–1384"},"PeriodicalIF":7.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbonic Anhydrase-Integrated Silk Hydrogels for Efficient Microalgae Growth and Carbon Fixation\",\"authors\":\"Taoqing He, Yawen Yin, XingXing Li, Lei Zhu, Zhaozhu Zheng, Gang Li, Xiaoqin Wang* and David L. Kaplan, \",\"doi\":\"10.1021/acsestengg.4c0083110.1021/acsestengg.4c00831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microalgae can capture CO<sub>2</sub> from the air and convert it into biomass and valuable byproducts, positioning these organisms as the key in terms of sustainable carbon fixation technologies. However, cultivating microalgae efficiently and cost-effectively remains a significant challenge. In this study, we enhanced the cultivation of microalgal cells within a silk/alginate hydrogel, shielded by CO<sub>2</sub> adsorption/desorption functional fabrics, to generate an innovative sandwich-structured composite system. Additionally, carbonic anhydrase-encapsulated silk fibroin nanoparticles were synthesized and co-embedded with the microalgae in the hydrogel. This silk-based microencapsulation sustained enzymatic activity, improving the conversion of CO<sub>2</sub> to bicarbonate and providing vital inorganic carbon for microalgal growth. The integration of microchannels within the gel facilitated continuous flow of culture medium via a microinjection pump, addressing nutrient deficiencies during prolonged exposure to air. Our findings indicate that microalgae cultivated in this system exhibit a significantly higher growth rate and carbon fixation rate compared to control setups, highlighting their potential as a carbon fixation system.</p>\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":\"5 6\",\"pages\":\"1373–1384 1373–1384\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestengg.4c00831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Carbonic Anhydrase-Integrated Silk Hydrogels for Efficient Microalgae Growth and Carbon Fixation
Microalgae can capture CO2 from the air and convert it into biomass and valuable byproducts, positioning these organisms as the key in terms of sustainable carbon fixation technologies. However, cultivating microalgae efficiently and cost-effectively remains a significant challenge. In this study, we enhanced the cultivation of microalgal cells within a silk/alginate hydrogel, shielded by CO2 adsorption/desorption functional fabrics, to generate an innovative sandwich-structured composite system. Additionally, carbonic anhydrase-encapsulated silk fibroin nanoparticles were synthesized and co-embedded with the microalgae in the hydrogel. This silk-based microencapsulation sustained enzymatic activity, improving the conversion of CO2 to bicarbonate and providing vital inorganic carbon for microalgal growth. The integration of microchannels within the gel facilitated continuous flow of culture medium via a microinjection pump, addressing nutrient deficiencies during prolonged exposure to air. Our findings indicate that microalgae cultivated in this system exhibit a significantly higher growth rate and carbon fixation rate compared to control setups, highlighting their potential as a carbon fixation system.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.