利用电化学直接脱氧硅基化醇和酮

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi-Xian Zheng, Yuan-Xin Wu, Li-Jian Su, Dr. Peng Xiong, Prof. Dr. Hai-Chao Xu
{"title":"利用电化学直接脱氧硅基化醇和酮","authors":"Yi-Xian Zheng,&nbsp;Yuan-Xin Wu,&nbsp;Li-Jian Su,&nbsp;Dr. Peng Xiong,&nbsp;Prof. Dr. Hai-Chao Xu","doi":"10.1002/anie.202509411","DOIUrl":null,"url":null,"abstract":"<p>Alcohols and ketones are abundant and structurally diverse feedstocks, yet their direct transformation into organosilicon compounds remains challenging due to the difficulty in selective cleaving C─OH and C═O bonds. Here, we report an electrochemically driven deoxygenative C─Si bond formation strategy that converts alcohols and ketones directly to organosilicon compounds. The reactions operate under mild conditions without external redox reagents and sacrificial electrodes. A wide range of alcohols, including primary, secondary, and tertiary alcohols, as well as ketones, are efficiently converted to the corresponding organosilane products. Overall, this study provides a step-economical, highly efficient, and synthetically versatile platform for the direct conversion of feedstock chemicals into valuable organosilicon compounds.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 40","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Electrochemistry for Direct Deoxygenative Silylation of Alcohols and Ketones\",\"authors\":\"Yi-Xian Zheng,&nbsp;Yuan-Xin Wu,&nbsp;Li-Jian Su,&nbsp;Dr. Peng Xiong,&nbsp;Prof. Dr. Hai-Chao Xu\",\"doi\":\"10.1002/anie.202509411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Alcohols and ketones are abundant and structurally diverse feedstocks, yet their direct transformation into organosilicon compounds remains challenging due to the difficulty in selective cleaving C─OH and C═O bonds. Here, we report an electrochemically driven deoxygenative C─Si bond formation strategy that converts alcohols and ketones directly to organosilicon compounds. The reactions operate under mild conditions without external redox reagents and sacrificial electrodes. A wide range of alcohols, including primary, secondary, and tertiary alcohols, as well as ketones, are efficiently converted to the corresponding organosilane products. Overall, this study provides a step-economical, highly efficient, and synthetically versatile platform for the direct conversion of feedstock chemicals into valuable organosilicon compounds.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 40\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202509411\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202509411","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

醇类和酮类是丰富且结构多样的原料,但由于难以选择性切割C - oh和C=O键,它们直接转化为有机硅化合物仍然具有挑战性。在这里,我们报道了一种电化学驱动的脱氧C-Si键形成策略,将醇和酮直接转化为有机硅化合物。该反应在温和的条件下进行,没有外部氧化还原试剂和牺牲电极。各种醇,包括伯、仲、叔醇以及酮,都可以有效地转化为相应的有机硅烷产品。总的来说,这项研究为原料化学品直接转化为有价值的有机硅化合物提供了一个阶梯经济、高效和综合通用的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnessing Electrochemistry for Direct Deoxygenative Silylation of Alcohols and Ketones

Harnessing Electrochemistry for Direct Deoxygenative Silylation of Alcohols and Ketones

Alcohols and ketones are abundant and structurally diverse feedstocks, yet their direct transformation into organosilicon compounds remains challenging due to the difficulty in selective cleaving C─OH and C═O bonds. Here, we report an electrochemically driven deoxygenative C─Si bond formation strategy that converts alcohols and ketones directly to organosilicon compounds. The reactions operate under mild conditions without external redox reagents and sacrificial electrodes. A wide range of alcohols, including primary, secondary, and tertiary alcohols, as well as ketones, are efficiently converted to the corresponding organosilane products. Overall, this study provides a step-economical, highly efficient, and synthetically versatile platform for the direct conversion of feedstock chemicals into valuable organosilicon compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信