la掺杂LaFeCoOOH双功能材料的析氧反应和超级电容器

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Le Gao, Yue Yao, Yongheng Ma, Jiajun Huang, Yun Chen, Li Chen, Lishan Jia
{"title":"la掺杂LaFeCoOOH双功能材料的析氧反应和超级电容器","authors":"Le Gao, Yue Yao, Yongheng Ma, Jiajun Huang, Yun Chen, Li Chen, Lishan Jia","doi":"10.1002/adfm.202507282","DOIUrl":null,"url":null,"abstract":"Developing efficient multifunctional materials for the oxygen evolution reaction (OER) and supercapacitors has become essential for storing and converting energy. Taking advantage of the structural flexibility of metal–organic frameworks (MOFs), bifunctional electrochemical nanomaterial LaFeCoOOH with high performance is successfully synthesized by doping rare earth La atoms in transition metals. La doping modifies the coordination environment of active sites and material morphology, modulates the energy structure, improves material conductivity, and optimizes the adsorption and desorption performance of oxygen intermediates. LaFeCoOOH demonstrates exceptional electrocatalytic activity for OER, achieving a remarkably low overpotential of 177 mV at 10 mA cm<sup>−2</sup> current density in 1 <span>m</span> KOH alkaline electrolyte. The material exhibits outstanding operational stability, maintaining consistent performance for over 1000 h at an elevated current density of 100 mA cm<sup>−2</sup> under identical alkaline conditions. Furthermore, LaFeCoOOH electrode displays superior electrochemical energy storage capabilities, demonstrating an impressive specific capacitance of 3508 mF cm<sup>−2</sup> at 1 mA cm<sup>−2</sup> current density. When configured as an asymmetric supercapacitor (LaFeCoOOH//Activated Carbon (AC)) using 6 <span>m</span> KOH electrolyte, the device achieves an exceptional energy density of 118.52 µWh cm<sup>−2</sup> while delivering a power density of 1700 µW cm<sup>−2</sup>, highlighting its dual functionality for both energy conversion and storage applications. Hence, this study provides a new perspective for the exploration of new multifunctional transition metal composites modified with rare earth elements for energy storage and conversion applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"602 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"La-Doped LaFeCoOOH Bifunctional Materials for Oxygen Evolution Reaction and Supercapacitors\",\"authors\":\"Le Gao, Yue Yao, Yongheng Ma, Jiajun Huang, Yun Chen, Li Chen, Lishan Jia\",\"doi\":\"10.1002/adfm.202507282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing efficient multifunctional materials for the oxygen evolution reaction (OER) and supercapacitors has become essential for storing and converting energy. Taking advantage of the structural flexibility of metal–organic frameworks (MOFs), bifunctional electrochemical nanomaterial LaFeCoOOH with high performance is successfully synthesized by doping rare earth La atoms in transition metals. La doping modifies the coordination environment of active sites and material morphology, modulates the energy structure, improves material conductivity, and optimizes the adsorption and desorption performance of oxygen intermediates. LaFeCoOOH demonstrates exceptional electrocatalytic activity for OER, achieving a remarkably low overpotential of 177 mV at 10 mA cm<sup>−2</sup> current density in 1 <span>m</span> KOH alkaline electrolyte. The material exhibits outstanding operational stability, maintaining consistent performance for over 1000 h at an elevated current density of 100 mA cm<sup>−2</sup> under identical alkaline conditions. Furthermore, LaFeCoOOH electrode displays superior electrochemical energy storage capabilities, demonstrating an impressive specific capacitance of 3508 mF cm<sup>−2</sup> at 1 mA cm<sup>−2</sup> current density. When configured as an asymmetric supercapacitor (LaFeCoOOH//Activated Carbon (AC)) using 6 <span>m</span> KOH electrolyte, the device achieves an exceptional energy density of 118.52 µWh cm<sup>−2</sup> while delivering a power density of 1700 µW cm<sup>−2</sup>, highlighting its dual functionality for both energy conversion and storage applications. Hence, this study provides a new perspective for the exploration of new multifunctional transition metal composites modified with rare earth elements for energy storage and conversion applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"602 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202507282\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202507282","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为析氧反应(OER)和超级电容器开发高效的多功能材料已成为存储和转换能量的必要条件。利用金属有机骨架(mof)的结构柔韧性,在过渡金属中掺杂稀土La原子,成功合成了高性能的双功能电化学纳米材料LaFeCoOOH。La掺杂改变了活性位点和材料形态的配位环境,调节了能量结构,提高了材料的电导率,优化了氧中间体的吸附和解吸性能。LaFeCoOOH对OER表现出优异的电催化活性,在1 m KOH碱性电解质中,在10 mA cm - 2电流密度下实现了177 mV的过电位。该材料表现出出色的操作稳定性,在相同的碱性条件下,在100毫安厘米−2的高电流密度下保持1000小时以上的稳定性能。此外,LaFeCoOOH电极显示出卓越的电化学储能能力,在1 mA cm - 2电流密度下,其比电容达到了令人印象深刻的3508 mF cm - 2。当配置为使用6 m KOH电解液的非对称超级电容器(LaFeCoOOH//活性炭(AC))时,该器件实现了118.52µWh cm - 2的卓越能量密度,同时提供1700µW cm - 2的功率密度,突出了其在能量转换和存储应用中的双重功能。因此,本研究为探索以稀土元素改性的新型多功能过渡金属复合材料的储能和转换应用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

La-Doped LaFeCoOOH Bifunctional Materials for Oxygen Evolution Reaction and Supercapacitors

La-Doped LaFeCoOOH Bifunctional Materials for Oxygen Evolution Reaction and Supercapacitors
Developing efficient multifunctional materials for the oxygen evolution reaction (OER) and supercapacitors has become essential for storing and converting energy. Taking advantage of the structural flexibility of metal–organic frameworks (MOFs), bifunctional electrochemical nanomaterial LaFeCoOOH with high performance is successfully synthesized by doping rare earth La atoms in transition metals. La doping modifies the coordination environment of active sites and material morphology, modulates the energy structure, improves material conductivity, and optimizes the adsorption and desorption performance of oxygen intermediates. LaFeCoOOH demonstrates exceptional electrocatalytic activity for OER, achieving a remarkably low overpotential of 177 mV at 10 mA cm−2 current density in 1 m KOH alkaline electrolyte. The material exhibits outstanding operational stability, maintaining consistent performance for over 1000 h at an elevated current density of 100 mA cm−2 under identical alkaline conditions. Furthermore, LaFeCoOOH electrode displays superior electrochemical energy storage capabilities, demonstrating an impressive specific capacitance of 3508 mF cm−2 at 1 mA cm−2 current density. When configured as an asymmetric supercapacitor (LaFeCoOOH//Activated Carbon (AC)) using 6 m KOH electrolyte, the device achieves an exceptional energy density of 118.52 µWh cm−2 while delivering a power density of 1700 µW cm−2, highlighting its dual functionality for both energy conversion and storage applications. Hence, this study provides a new perspective for the exploration of new multifunctional transition metal composites modified with rare earth elements for energy storage and conversion applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信