Cu2O/FeOx@CNFs p-n异质结纳米酶的工程电子分布:提高Fenton反应效率

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shiwen Zhao, Lintao Yang, Jinggao Wu, Shipeng Qi, Yaojie Liu, Honglei Tian, Jianke Li and Yuhuan Zhang
{"title":"Cu2O/FeOx@CNFs p-n异质结纳米酶的工程电子分布:提高Fenton反应效率","authors":"Shiwen Zhao, Lintao Yang, Jinggao Wu, Shipeng Qi, Yaojie Liu, Honglei Tian, Jianke Li and Yuhuan Zhang","doi":"10.1039/D5TA02242H","DOIUrl":null,"url":null,"abstract":"<p >Nanozymes with high efficiency, stability, and cost-effectiveness hold great potential for various applications. However, their use in Fenton reactions is limited by the rate-limiting step of Fe<small><sup>3+</sup></small> reduction. Herein, oxygen vacancy-rich Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small><em>p</em>–<em>n</em> heterojunction on carbon nanofibers (Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>@CNFs) is developed to boost Fenton reaction efficiency. The heterojunction structure harnesses a built-in electric field to facilitate charge carrier separation, with Cu<small><sup>+</sup></small> serving as the electron donor for accelerating the reduction of surface-generated Fe<small><sup>3+</sup></small>. Meanwhile, Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>@CNFs encourages abundant lattice defects, creating ample catalytic sites and oxygen vacancies. Theoretical insights revealed that the defect-rich property well regulated the electron distribution at the atomic level, driving the adsorption–desorption process and accelerating Fenton reaction kinetics. As such, Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>@CNFs demonstrates an affinity for H<small><sub>2</sub></small>O<small><sub>2</sub></small> up to 200 times that of natural horseradish peroxidase (HRP) and a <em>V</em><small><sub>max</sub></small> 3.40 times higher. The CNFs used as the support well confine Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>, endowing Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>@CNFs with high stability and biocompatibility, and fast mass transport. The strong intrinsic magnetic properties of Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>@CNFs contribute to recyclability. Finally, Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>@CNFs is successfully employed in efficient pollutant degradation and antibacterial applications, offering new insights into the rational design of nanozymes with desired properties.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 28","pages":" 22885-22902"},"PeriodicalIF":9.5000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering electron distribution of Cu2O/FeOx@CNFs p–n heterojunction nanozyme: boosting the Fenton reaction efficiency†\",\"authors\":\"Shiwen Zhao, Lintao Yang, Jinggao Wu, Shipeng Qi, Yaojie Liu, Honglei Tian, Jianke Li and Yuhuan Zhang\",\"doi\":\"10.1039/D5TA02242H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanozymes with high efficiency, stability, and cost-effectiveness hold great potential for various applications. However, their use in Fenton reactions is limited by the rate-limiting step of Fe<small><sup>3+</sup></small> reduction. Herein, oxygen vacancy-rich Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small><em>p</em>–<em>n</em> heterojunction on carbon nanofibers (Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>@CNFs) is developed to boost Fenton reaction efficiency. The heterojunction structure harnesses a built-in electric field to facilitate charge carrier separation, with Cu<small><sup>+</sup></small> serving as the electron donor for accelerating the reduction of surface-generated Fe<small><sup>3+</sup></small>. Meanwhile, Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>@CNFs encourages abundant lattice defects, creating ample catalytic sites and oxygen vacancies. Theoretical insights revealed that the defect-rich property well regulated the electron distribution at the atomic level, driving the adsorption–desorption process and accelerating Fenton reaction kinetics. As such, Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>@CNFs demonstrates an affinity for H<small><sub>2</sub></small>O<small><sub>2</sub></small> up to 200 times that of natural horseradish peroxidase (HRP) and a <em>V</em><small><sub>max</sub></small> 3.40 times higher. The CNFs used as the support well confine Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>, endowing Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>@CNFs with high stability and biocompatibility, and fast mass transport. The strong intrinsic magnetic properties of Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>@CNFs contribute to recyclability. Finally, Cu<small><sub>2</sub></small>O/FeO<small><sub><em>x</em></sub></small>@CNFs is successfully employed in efficient pollutant degradation and antibacterial applications, offering new insights into the rational design of nanozymes with desired properties.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 28\",\"pages\":\" 22885-22902\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02242h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02242h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

纳米酶具有高效、稳定、经济的特点,具有广阔的应用前景。然而,它们在Fenton反应中的应用受到Fe3+还原的限速步骤的限制。在碳纳米纤维(Cu2O/FeOx@CNFs)上建立富氧空位的Cu2O/FeOx p-n异质结以提高Fenton反应效率。异质结结构利用内置电场促进电荷载流子分离,Cu+作为电子供体加速表面生成Fe3+的还原。同时,Cu2O/FeOx@CNFs促进了大量的晶格缺陷,产生了大量的催化位点和氧空位。理论分析表明,富缺陷特性在原子水平上很好地调节了电子分布,驱动了吸附-解吸过程,加速了芬顿反应动力学。因此,Cu2O/FeOx@CNFs对H2O2的亲和力是天然辣根过氧化物酶(HRP)的200倍,Vmax是天然辣根过氧化物酶的3.40倍。CNFs作为载体对Cu2O/FeOx有良好的约束,使Cu2O/FeOx@CNFs具有较高的稳定性和生物相容性,并具有快速的质量传输。Cu2O/FeOx@CNFs的强本征磁性能有助于可回收性。最后,Cu2O/FeOx@CNFs被成功地应用于有效的污染物降解和抗菌应用,为合理设计具有所需性能的纳米酶提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering electron distribution of Cu2O/FeOx@CNFs p–n heterojunction nanozyme: boosting the Fenton reaction efficiency†

Engineering electron distribution of Cu2O/FeOx@CNFs p–n heterojunction nanozyme: boosting the Fenton reaction efficiency†

Nanozymes with high efficiency, stability, and cost-effectiveness hold great potential for various applications. However, their use in Fenton reactions is limited by the rate-limiting step of Fe3+ reduction. Herein, oxygen vacancy-rich Cu2O/FeOxpn heterojunction on carbon nanofibers (Cu2O/FeOx@CNFs) is developed to boost Fenton reaction efficiency. The heterojunction structure harnesses a built-in electric field to facilitate charge carrier separation, with Cu+ serving as the electron donor for accelerating the reduction of surface-generated Fe3+. Meanwhile, Cu2O/FeOx@CNFs encourages abundant lattice defects, creating ample catalytic sites and oxygen vacancies. Theoretical insights revealed that the defect-rich property well regulated the electron distribution at the atomic level, driving the adsorption–desorption process and accelerating Fenton reaction kinetics. As such, Cu2O/FeOx@CNFs demonstrates an affinity for H2O2 up to 200 times that of natural horseradish peroxidase (HRP) and a Vmax 3.40 times higher. The CNFs used as the support well confine Cu2O/FeOx, endowing Cu2O/FeOx@CNFs with high stability and biocompatibility, and fast mass transport. The strong intrinsic magnetic properties of Cu2O/FeOx@CNFs contribute to recyclability. Finally, Cu2O/FeOx@CNFs is successfully employed in efficient pollutant degradation and antibacterial applications, offering new insights into the rational design of nanozymes with desired properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信