{"title":"小胶质细胞在调节微生物-肠-脑轴中的作用","authors":"Lily Keane, Gerard Clarke, John F. Cryan","doi":"10.1038/s41577-025-01188-9","DOIUrl":null,"url":null,"abstract":"<p>Microglia, the resident immune cells of the brain, are now recognized as being active participants in the onset and progression of many neurological and neuropsychiatric disorders. As a result, substantial effort has been made in finding ways to target, deplete or modulate the aberrant phenotypes of the microglia that are present in these different disease states, albeit with varied levels of success. The gut microbiota has recently emerged as a master regulator of microglia throughout the lifespan; here, we propose that this microbiota–microglia cross-talk may have major implications for our understanding of neurological disorders and neuropsychiatric diseases. We focus on the latest advances in understanding gut–microglia communication in the context of microglial heterogeneity and microglia-related functions, as well as considering the evidence for effects of these pathways on diseases and disorders of the central nervous system. We also address the challenges, opportunities and clinical implications of this emerging area of research.</p>","PeriodicalId":19049,"journal":{"name":"Nature Reviews Immunology","volume":"47 1","pages":""},"PeriodicalIF":67.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A role for microglia in mediating the microbiota–gut–brain axis\",\"authors\":\"Lily Keane, Gerard Clarke, John F. Cryan\",\"doi\":\"10.1038/s41577-025-01188-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microglia, the resident immune cells of the brain, are now recognized as being active participants in the onset and progression of many neurological and neuropsychiatric disorders. As a result, substantial effort has been made in finding ways to target, deplete or modulate the aberrant phenotypes of the microglia that are present in these different disease states, albeit with varied levels of success. The gut microbiota has recently emerged as a master regulator of microglia throughout the lifespan; here, we propose that this microbiota–microglia cross-talk may have major implications for our understanding of neurological disorders and neuropsychiatric diseases. We focus on the latest advances in understanding gut–microglia communication in the context of microglial heterogeneity and microglia-related functions, as well as considering the evidence for effects of these pathways on diseases and disorders of the central nervous system. We also address the challenges, opportunities and clinical implications of this emerging area of research.</p>\",\"PeriodicalId\":19049,\"journal\":{\"name\":\"Nature Reviews Immunology\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":67.7000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41577-025-01188-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41577-025-01188-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A role for microglia in mediating the microbiota–gut–brain axis
Microglia, the resident immune cells of the brain, are now recognized as being active participants in the onset and progression of many neurological and neuropsychiatric disorders. As a result, substantial effort has been made in finding ways to target, deplete or modulate the aberrant phenotypes of the microglia that are present in these different disease states, albeit with varied levels of success. The gut microbiota has recently emerged as a master regulator of microglia throughout the lifespan; here, we propose that this microbiota–microglia cross-talk may have major implications for our understanding of neurological disorders and neuropsychiatric diseases. We focus on the latest advances in understanding gut–microglia communication in the context of microglial heterogeneity and microglia-related functions, as well as considering the evidence for effects of these pathways on diseases and disorders of the central nervous system. We also address the challenges, opportunities and clinical implications of this emerging area of research.
期刊介绍:
Nature Reviews Immunology is a journal that provides comprehensive coverage of all areas of immunology, including fundamental mechanisms and applied aspects. It has two international standard serial numbers (ISSN): 1474-1733 for print and 1474-1741 for online. In addition to review articles, the journal also features recent developments and new primary papers in the field, as well as reflections on influential people, papers, and events in the development of immunology. The subjects covered by Nature Reviews Immunology include allergy and asthma, autoimmunity, antigen processing and presentation, apoptosis and cell death, chemokines and chemokine receptors, cytokines and cytokine receptors, development and function of cells of the immune system, haematopoiesis, infection and immunity, immunotherapy, innate immunity, mucosal immunology and the microbiota, regulation of the immune response, signalling in the immune system, transplantation, tumour immunology and immunotherapy, and vaccine development.