Zheng Jiang, Jie Yang, Wenbin Wang, Yangyu Liu, Yuhan Zhou, Jing Xu, Wang Wang, Hongyao Ding, Ya Zhong, Haifeng Zhao, Sai Bai, Weidong Xu, Wing Chung Tsoi, Tao Yu, Chunxiong Bao, Xiaodong Shen, Pengpeng Teng
{"title":"高效锡基钙钛矿发光二极管的埋藏界面修饰策略","authors":"Zheng Jiang, Jie Yang, Wenbin Wang, Yangyu Liu, Yuhan Zhou, Jing Xu, Wang Wang, Hongyao Ding, Ya Zhong, Haifeng Zhao, Sai Bai, Weidong Xu, Wing Chung Tsoi, Tao Yu, Chunxiong Bao, Xiaodong Shen, Pengpeng Teng","doi":"10.1002/anie.202507914","DOIUrl":null,"url":null,"abstract":"<p>Tin (Sn)-based perovskites show great potential for environmentally friendly and high-performance light-emitting diodes (LEDs). However, the development of Sn-based perovskite LEDs (PeLEDs) lags significantly behind that of lead-based perovskites. This is mainly due to the faster crystallization rate of Sn-based perovskites that leads to a higher defect density in Sn-based perovskite films, thereby serious nonradiative recombination. Here, we demonstrated a buried interface modification (BIM) strategy to regulate the crystallization kinetics of Sn-based perovskite films by using carboxylate as multifunctional surface modifiers. We reveal that the buried interface is critical to improve the nucleation and crystallization of Sn-based perovskite films. As a result, efficient near-infrared Sn-based PeLEDs were achieved with an external quantum efficiency (EQE) of 11.9%. This work suggests an efficient and elegant route to obtain high-performance Sn-based perovskite films and devices.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 33","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buried Interface Modification Strategy for Efficient Tin-Based Perovskite Light-Emitting Diodes\",\"authors\":\"Zheng Jiang, Jie Yang, Wenbin Wang, Yangyu Liu, Yuhan Zhou, Jing Xu, Wang Wang, Hongyao Ding, Ya Zhong, Haifeng Zhao, Sai Bai, Weidong Xu, Wing Chung Tsoi, Tao Yu, Chunxiong Bao, Xiaodong Shen, Pengpeng Teng\",\"doi\":\"10.1002/anie.202507914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tin (Sn)-based perovskites show great potential for environmentally friendly and high-performance light-emitting diodes (LEDs). However, the development of Sn-based perovskite LEDs (PeLEDs) lags significantly behind that of lead-based perovskites. This is mainly due to the faster crystallization rate of Sn-based perovskites that leads to a higher defect density in Sn-based perovskite films, thereby serious nonradiative recombination. Here, we demonstrated a buried interface modification (BIM) strategy to regulate the crystallization kinetics of Sn-based perovskite films by using carboxylate as multifunctional surface modifiers. We reveal that the buried interface is critical to improve the nucleation and crystallization of Sn-based perovskite films. As a result, efficient near-infrared Sn-based PeLEDs were achieved with an external quantum efficiency (EQE) of 11.9%. This work suggests an efficient and elegant route to obtain high-performance Sn-based perovskite films and devices.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 33\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507914\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507914","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Buried Interface Modification Strategy for Efficient Tin-Based Perovskite Light-Emitting Diodes
Tin (Sn)-based perovskites show great potential for environmentally friendly and high-performance light-emitting diodes (LEDs). However, the development of Sn-based perovskite LEDs (PeLEDs) lags significantly behind that of lead-based perovskites. This is mainly due to the faster crystallization rate of Sn-based perovskites that leads to a higher defect density in Sn-based perovskite films, thereby serious nonradiative recombination. Here, we demonstrated a buried interface modification (BIM) strategy to regulate the crystallization kinetics of Sn-based perovskite films by using carboxylate as multifunctional surface modifiers. We reveal that the buried interface is critical to improve the nucleation and crystallization of Sn-based perovskite films. As a result, efficient near-infrared Sn-based PeLEDs were achieved with an external quantum efficiency (EQE) of 11.9%. This work suggests an efficient and elegant route to obtain high-performance Sn-based perovskite films and devices.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.