发展一个肾小体模型来说明肾生理学的概念。

IF 1.7 4区 教育学 Q2 EDUCATION, SCIENTIFIC DISCIPLINES
Advances in Physiology Education Pub Date : 2025-09-01 Epub Date: 2025-06-10 DOI:10.1152/advan.00133.2024
Jacob E Hansen, Jonathan A Chickering, Amy J Sullivan, Zachary E Stelter
{"title":"发展一个肾小体模型来说明肾生理学的概念。","authors":"Jacob E Hansen, Jonathan A Chickering, Amy J Sullivan, Zachary E Stelter","doi":"10.1152/advan.00133.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Models that illustrate renal fluid dynamics are scarce within the secondary and postsecondary landscape. This work summarizes the efforts to build a rudimentary model renal corpuscle (MRC) that can be employed in a problem-based learning exercise or demonstration to teach basic principles of renal physiology to secondary students or undergraduates. The MRC presented here was constructed from readily available parts and allows the user to simulate changes in \"systemic blood pressure,\" modulate the diameter of the \"afferent arteriole,\" and assess how these changes affect glomerular filtration. While our model shows promise as an educational tool, modifications are suggested before it is optimized for student use.<b>NEW & NOTEWORTHY</b> This work describes the efforts to create a model renal corpuscle that may be employed in an educational demo or problem-based learning exercise. Working nephron models that illustrate renal fluid dynamics are not widely available, which warrants the exploration of this new domain of teaching tools.</p>","PeriodicalId":50852,"journal":{"name":"Advances in Physiology Education","volume":" ","pages":"738-741"},"PeriodicalIF":1.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a model renal corpuscle to illustrate concepts in renal physiology.\",\"authors\":\"Jacob E Hansen, Jonathan A Chickering, Amy J Sullivan, Zachary E Stelter\",\"doi\":\"10.1152/advan.00133.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Models that illustrate renal fluid dynamics are scarce within the secondary and postsecondary landscape. This work summarizes the efforts to build a rudimentary model renal corpuscle (MRC) that can be employed in a problem-based learning exercise or demonstration to teach basic principles of renal physiology to secondary students or undergraduates. The MRC presented here was constructed from readily available parts and allows the user to simulate changes in \\\"systemic blood pressure,\\\" modulate the diameter of the \\\"afferent arteriole,\\\" and assess how these changes affect glomerular filtration. While our model shows promise as an educational tool, modifications are suggested before it is optimized for student use.<b>NEW & NOTEWORTHY</b> This work describes the efforts to create a model renal corpuscle that may be employed in an educational demo or problem-based learning exercise. Working nephron models that illustrate renal fluid dynamics are not widely available, which warrants the exploration of this new domain of teaching tools.</p>\",\"PeriodicalId\":50852,\"journal\":{\"name\":\"Advances in Physiology Education\",\"volume\":\" \",\"pages\":\"738-741\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physiology Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1152/advan.00133.2024\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physiology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1152/advan.00133.2024","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

说明肾脏流体动力学的模型在中学和中学后景观是稀缺的。这项工作总结了建立一个基本模型肾小体(MRC)的努力,该模型可以用于基于问题的学习练习或演示,向中学生或本科生教授肾脏生理学的基本原理。这里展示的MRC是由现成的部件构建的,允许用户模拟“全身血压”的变化,调节“传入小动脉”的直径,并评估这些变化如何影响肾小球滤过。虽然这里展示的模型显示了作为一种教育工具的希望,但在为学生使用而优化之前,建议进行修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a model renal corpuscle to illustrate concepts in renal physiology.

Models that illustrate renal fluid dynamics are scarce within the secondary and postsecondary landscape. This work summarizes the efforts to build a rudimentary model renal corpuscle (MRC) that can be employed in a problem-based learning exercise or demonstration to teach basic principles of renal physiology to secondary students or undergraduates. The MRC presented here was constructed from readily available parts and allows the user to simulate changes in "systemic blood pressure," modulate the diameter of the "afferent arteriole," and assess how these changes affect glomerular filtration. While our model shows promise as an educational tool, modifications are suggested before it is optimized for student use.NEW & NOTEWORTHY This work describes the efforts to create a model renal corpuscle that may be employed in an educational demo or problem-based learning exercise. Working nephron models that illustrate renal fluid dynamics are not widely available, which warrants the exploration of this new domain of teaching tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
19.00%
发文量
100
审稿时长
>12 weeks
期刊介绍: Advances in Physiology Education promotes and disseminates educational scholarship in order to enhance teaching and learning of physiology, neuroscience and pathophysiology. The journal publishes peer-reviewed descriptions of innovations that improve teaching in the classroom and laboratory, essays on education, and review articles based on our current understanding of physiological mechanisms. Submissions that evaluate new technologies for teaching and research, and educational pedagogy, are especially welcome. The audience for the journal includes educators at all levels: K–12, undergraduate, graduate, and professional programs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信