使用可解释的机器学习模型预测危重感染性心力衰竭患者的生存率。

IF 1.4 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Hai-Ying Yang, Meng-Han Jiang, Fang Yu, Li-Juan Yang, Xin Zhang, De-Min Li, Yu Guo, Jia-De Zhu, Sun-Jun Yin, Gong-Hao He
{"title":"使用可解释的机器学习模型预测危重感染性心力衰竭患者的生存率。","authors":"Hai-Ying Yang, Meng-Han Jiang, Fang Yu, Li-Juan Yang, Xin Zhang, De-Min Li, Yu Guo, Jia-De Zhu, Sun-Jun Yin, Gong-Hao He","doi":"10.1177/09287329251346284","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Septic patients with heart failure (HF) have higher mortality and poorer prognosis than patients with either disease alone. Currently, no tool exists for predicting survival rate in such patients.</p><p><strong>Objective: </strong>This study aimed to develop an interpretable prediction model to predict survival rate for septic patients with HF.</p><p><strong>Methods: </strong>Severe septic patients with HF were recruited from the MIMIC-IV database (as training and internal validation cohorts) as well as from the MIMIC-III database (as external validation cohorts). Four models including Deep Learning Survival (DeepSurv) were constructed and evaluated. Furthermore, Shapley Additive Explanations (SHAP) method was employed to explain the DeepSurv model.</p><p><strong>Results: </strong>A total of 11,778 patients were included and 22 features were identified to construct the models. Among the 4 models, the DeepSurv model had the highest area under the curve (AUC) values with an AUC of 0.851 (internal) and 0.801 (external) and C-index of 0.8329 (internal) and 0.7816 (external). The mean cumulative/dynamic AUC values exceeded 0.85 in both internal and external validations. The Integrated Brier Score values were well below 0.25, at 0.068 and 0.093, respectively. Furthermore, the Decision Curve Analysis showed that the DeepSurv model achieved favorable net benefit. The SHAP method further confirmed the reliability of the DeepSurv model.</p><p><strong>Conclusion: </strong>Our DeepSurv model was the most comprehensive interpretable prediction model specifically developed and validated for septic critically ill patients with HF. It demonstrated good model performance in predicting the 28-day survival rate of such patients and will provide valuable decision support for clinicians.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"9287329251346284"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting survival rates of critically ill septic patients with heart failure using interpretable machine learning models.\",\"authors\":\"Hai-Ying Yang, Meng-Han Jiang, Fang Yu, Li-Juan Yang, Xin Zhang, De-Min Li, Yu Guo, Jia-De Zhu, Sun-Jun Yin, Gong-Hao He\",\"doi\":\"10.1177/09287329251346284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Septic patients with heart failure (HF) have higher mortality and poorer prognosis than patients with either disease alone. Currently, no tool exists for predicting survival rate in such patients.</p><p><strong>Objective: </strong>This study aimed to develop an interpretable prediction model to predict survival rate for septic patients with HF.</p><p><strong>Methods: </strong>Severe septic patients with HF were recruited from the MIMIC-IV database (as training and internal validation cohorts) as well as from the MIMIC-III database (as external validation cohorts). Four models including Deep Learning Survival (DeepSurv) were constructed and evaluated. Furthermore, Shapley Additive Explanations (SHAP) method was employed to explain the DeepSurv model.</p><p><strong>Results: </strong>A total of 11,778 patients were included and 22 features were identified to construct the models. Among the 4 models, the DeepSurv model had the highest area under the curve (AUC) values with an AUC of 0.851 (internal) and 0.801 (external) and C-index of 0.8329 (internal) and 0.7816 (external). The mean cumulative/dynamic AUC values exceeded 0.85 in both internal and external validations. The Integrated Brier Score values were well below 0.25, at 0.068 and 0.093, respectively. Furthermore, the Decision Curve Analysis showed that the DeepSurv model achieved favorable net benefit. The SHAP method further confirmed the reliability of the DeepSurv model.</p><p><strong>Conclusion: </strong>Our DeepSurv model was the most comprehensive interpretable prediction model specifically developed and validated for septic critically ill patients with HF. It demonstrated good model performance in predicting the 28-day survival rate of such patients and will provide valuable decision support for clinicians.</p>\",\"PeriodicalId\":48978,\"journal\":{\"name\":\"Technology and Health Care\",\"volume\":\" \",\"pages\":\"9287329251346284\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology and Health Care\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09287329251346284\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09287329251346284","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:脓毒症合并心力衰竭(HF)患者的死亡率和预后均高于单纯合并这两种疾病的患者。目前,还没有工具可以预测这类患者的生存率。目的:本研究旨在建立一个可解释的预测模型来预测败血症合并心衰患者的生存率。方法:从MIMIC-IV数据库(作为训练和内部验证队列)和MIMIC-III数据库(作为外部验证队列)中招募严重脓毒症合并HF患者。构建并评估了深度学习生存(DeepSurv)等4个模型。采用Shapley加性解释(SHAP)方法对DeepSurv模型进行解释。结果:共纳入11778例患者,确定22个特征构建模型。在4个模型中,DeepSurv模型的曲线下面积(AUC)值最高,AUC为0.851(内部)和0.801(外部),c指数为0.8329(内部)和0.7816(外部)。在内部和外部验证中,平均累积/动态AUC值均超过0.85。综合Brier评分值远低于0.25,分别为0.068和0.093。决策曲线分析表明,DeepSurv模型获得了良好的净效益。SHAP方法进一步证实了DeepSurv模型的可靠性。结论:我们的DeepSurv模型是专门为化脓性心衰危重患者开发并验证的最全面的可解释预测模型。该模型在预测此类患者28天生存率方面表现良好,将为临床医生提供有价值的决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting survival rates of critically ill septic patients with heart failure using interpretable machine learning models.

Background: Septic patients with heart failure (HF) have higher mortality and poorer prognosis than patients with either disease alone. Currently, no tool exists for predicting survival rate in such patients.

Objective: This study aimed to develop an interpretable prediction model to predict survival rate for septic patients with HF.

Methods: Severe septic patients with HF were recruited from the MIMIC-IV database (as training and internal validation cohorts) as well as from the MIMIC-III database (as external validation cohorts). Four models including Deep Learning Survival (DeepSurv) were constructed and evaluated. Furthermore, Shapley Additive Explanations (SHAP) method was employed to explain the DeepSurv model.

Results: A total of 11,778 patients were included and 22 features were identified to construct the models. Among the 4 models, the DeepSurv model had the highest area under the curve (AUC) values with an AUC of 0.851 (internal) and 0.801 (external) and C-index of 0.8329 (internal) and 0.7816 (external). The mean cumulative/dynamic AUC values exceeded 0.85 in both internal and external validations. The Integrated Brier Score values were well below 0.25, at 0.068 and 0.093, respectively. Furthermore, the Decision Curve Analysis showed that the DeepSurv model achieved favorable net benefit. The SHAP method further confirmed the reliability of the DeepSurv model.

Conclusion: Our DeepSurv model was the most comprehensive interpretable prediction model specifically developed and validated for septic critically ill patients with HF. It demonstrated good model performance in predicting the 28-day survival rate of such patients and will provide valuable decision support for clinicians.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technology and Health Care
Technology and Health Care HEALTH CARE SCIENCES & SERVICES-ENGINEERING, BIOMEDICAL
CiteScore
2.10
自引率
6.20%
发文量
282
审稿时长
>12 weeks
期刊介绍: Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered: 1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables. 2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words. Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics. 4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors. 5.Letters to the Editors: Discussions or short statements (not indexed).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信