三维评估是必要的,以确定组织的真实,空间分辨组成。

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-06-16 Epub Date: 2025-06-09 DOI:10.1016/j.crmeth.2025.101075
André Forjaz, Eduarda Vaz, Valentina Matos Romero, Saurabh Joshi, Vasco Queiroga, Alicia M Braxton, Ann C Jiang, Kohei Fujikura, Toby Cornish, Seung-Mo Hong, Ralph H Hruban, Pei-Hsun Wu, Laura D Wood, Ashley L Kiemen, Denis Wirtz
{"title":"三维评估是必要的,以确定组织的真实,空间分辨组成。","authors":"André Forjaz, Eduarda Vaz, Valentina Matos Romero, Saurabh Joshi, Vasco Queiroga, Alicia M Braxton, Ann C Jiang, Kohei Fujikura, Toby Cornish, Seung-Mo Hong, Ralph H Hruban, Pei-Hsun Wu, Laura D Wood, Ashley L Kiemen, Denis Wirtz","doi":"10.1016/j.crmeth.2025.101075","DOIUrl":null,"url":null,"abstract":"<p><p>Methods for spatially resolved cellular profiling of tissue sections enable in-depth study of inter- and intra-sample heterogeneity but often profile small regions, requiring evaluation of many samples to compensate for limited assessment. Recent advances in three-dimensional (3D) tissue mapping offer deeper insights; however, attempts to quantify the information gained in transitioning to 3D remains limited. Here, to compare inter- and intra-sample tissue heterogeneity, we analyze >100 pancreas samples as cores, whole-slide images (WSIs), and cm<sup>3</sup>-sized 3D samples. We show that tens of WSIs and hundreds of tissue microarrays are needed to approximate the compositional tissue heterogeneity of tumors. Additionally, spatial correlations of pancreatic structures decay significantly within microns, demonstrating that isolated two-dimensional (2D) sections poorly represent their surroundings. Through 3D simulations, we determined the number of slides necessary to accurately measure tumor burden. These results quantify the power of 3D mapping and establish sampling methods for biological studies prioritizing composition or incidence.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101075"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12272251/pdf/","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional assessments are necessary to determine the true, spatially resolved composition of tissues.\",\"authors\":\"André Forjaz, Eduarda Vaz, Valentina Matos Romero, Saurabh Joshi, Vasco Queiroga, Alicia M Braxton, Ann C Jiang, Kohei Fujikura, Toby Cornish, Seung-Mo Hong, Ralph H Hruban, Pei-Hsun Wu, Laura D Wood, Ashley L Kiemen, Denis Wirtz\",\"doi\":\"10.1016/j.crmeth.2025.101075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Methods for spatially resolved cellular profiling of tissue sections enable in-depth study of inter- and intra-sample heterogeneity but often profile small regions, requiring evaluation of many samples to compensate for limited assessment. Recent advances in three-dimensional (3D) tissue mapping offer deeper insights; however, attempts to quantify the information gained in transitioning to 3D remains limited. Here, to compare inter- and intra-sample tissue heterogeneity, we analyze >100 pancreas samples as cores, whole-slide images (WSIs), and cm<sup>3</sup>-sized 3D samples. We show that tens of WSIs and hundreds of tissue microarrays are needed to approximate the compositional tissue heterogeneity of tumors. Additionally, spatial correlations of pancreatic structures decay significantly within microns, demonstrating that isolated two-dimensional (2D) sections poorly represent their surroundings. Through 3D simulations, we determined the number of slides necessary to accurately measure tumor burden. These results quantify the power of 3D mapping and establish sampling methods for biological studies prioritizing composition or incidence.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101075\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12272251/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

组织切片的空间分辨细胞分析方法能够深入研究样本间和样本内的异质性,但通常分析小区域,需要对许多样本进行评估以弥补有限的评估。三维(3D)组织制图的最新进展提供了更深入的见解;然而,试图量化在过渡到3D中获得的信息仍然有限。在这里,为了比较样本间和样本内的组织异质性,我们分析了bbb100胰腺样本作为核心、全片图像(wsi)和cm3大小的3D样本。我们表明,需要数十个wsi和数百个组织微阵列来近似肿瘤的组成组织异质性。此外,胰腺结构的空间相关性在微米范围内显著衰减,表明孤立的二维(2D)切片难以代表其周围环境。通过三维模拟,我们确定了精确测量肿瘤负荷所需的载玻片数量。这些结果量化了3D制图的力量,并建立了优先考虑成分或发生率的生物学研究的抽样方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional assessments are necessary to determine the true, spatially resolved composition of tissues.

Methods for spatially resolved cellular profiling of tissue sections enable in-depth study of inter- and intra-sample heterogeneity but often profile small regions, requiring evaluation of many samples to compensate for limited assessment. Recent advances in three-dimensional (3D) tissue mapping offer deeper insights; however, attempts to quantify the information gained in transitioning to 3D remains limited. Here, to compare inter- and intra-sample tissue heterogeneity, we analyze >100 pancreas samples as cores, whole-slide images (WSIs), and cm3-sized 3D samples. We show that tens of WSIs and hundreds of tissue microarrays are needed to approximate the compositional tissue heterogeneity of tumors. Additionally, spatial correlations of pancreatic structures decay significantly within microns, demonstrating that isolated two-dimensional (2D) sections poorly represent their surroundings. Through 3D simulations, we determined the number of slides necessary to accurately measure tumor burden. These results quantify the power of 3D mapping and establish sampling methods for biological studies prioritizing composition or incidence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信