在非配对生物医学图像到图像的翻译中保留空间和定量信息。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-06-16 Epub Date: 2025-06-09 DOI:10.1016/j.crmeth.2025.101074
Joshua Yedam You, Minho Eom, Tae-Ik Choi, Eun-Seo Cho, Jieun Choi, Minyoung Lee, Changyeop Shin, Jieun Moon, Eunji Kim, Pilhan Kim, Cheol-Hee Kim, Young-Gyu Yoon
{"title":"在非配对生物医学图像到图像的翻译中保留空间和定量信息。","authors":"Joshua Yedam You, Minho Eom, Tae-Ik Choi, Eun-Seo Cho, Jieun Choi, Minyoung Lee, Changyeop Shin, Jieun Moon, Eunji Kim, Pilhan Kim, Cheol-Hee Kim, Young-Gyu Yoon","doi":"10.1016/j.crmeth.2025.101074","DOIUrl":null,"url":null,"abstract":"<p><p>Analysis of biological samples often requires integrating diverse imaging modalities to gain a comprehensive understanding. While supervised biomedical image translation methods have shown success in synthesizing images across different modalities, they require paired data, which are often impractical to obtain due to challenges in data alignment and sample preparation. Unpaired methods, while not requiring paired data, struggle to preserve the precise spatial and quantitative information essential for accurate analysis. To address these challenges, we introduce STABLE (spatial and quantitative information preserving biomedical image translation), an unpaired image-to-image translation method that emphasizes the preservation of spatial and quantitative information by enforcing information consistency and employing dynamic, learnable upsampling operators to achieve pixel-level accuracy. We validate STABLE across various biomedical imaging tasks, including translating calcium imaging data from zebrafish brains and virtual histological staining, demonstrating its superior ability to preserve spatial details, signal intensities, and accurate alignment compared to existing methods.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101074"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preserving spatial and quantitative information in unpaired biomedical image-to-image translation.\",\"authors\":\"Joshua Yedam You, Minho Eom, Tae-Ik Choi, Eun-Seo Cho, Jieun Choi, Minyoung Lee, Changyeop Shin, Jieun Moon, Eunji Kim, Pilhan Kim, Cheol-Hee Kim, Young-Gyu Yoon\",\"doi\":\"10.1016/j.crmeth.2025.101074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analysis of biological samples often requires integrating diverse imaging modalities to gain a comprehensive understanding. While supervised biomedical image translation methods have shown success in synthesizing images across different modalities, they require paired data, which are often impractical to obtain due to challenges in data alignment and sample preparation. Unpaired methods, while not requiring paired data, struggle to preserve the precise spatial and quantitative information essential for accurate analysis. To address these challenges, we introduce STABLE (spatial and quantitative information preserving biomedical image translation), an unpaired image-to-image translation method that emphasizes the preservation of spatial and quantitative information by enforcing information consistency and employing dynamic, learnable upsampling operators to achieve pixel-level accuracy. We validate STABLE across various biomedical imaging tasks, including translating calcium imaging data from zebrafish brains and virtual histological staining, demonstrating its superior ability to preserve spatial details, signal intensities, and accurate alignment compared to existing methods.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101074\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

生物样品的分析通常需要综合不同的成像方式来获得全面的理解。虽然有监督的生物医学图像翻译方法在合成不同模式的图像方面取得了成功,但它们需要配对数据,由于数据对齐和样品制备方面的挑战,通常无法获得配对数据。非配对方法虽然不需要配对数据,但难以保留准确分析所必需的精确空间和定量信息。为了应对这些挑战,我们引入了STABLE(空间和定量信息保存生物医学图像翻译),这是一种非成对图像到图像的翻译方法,通过加强信息一致性和采用动态、可学习的上采样算子来实现像素级精度,强调空间和定量信息的保存。我们在各种生物医学成像任务中验证了STABLE,包括转换来自斑马鱼大脑的钙成像数据和虚拟组织学染色,证明了与现有方法相比,它具有保留空间细节、信号强度和精确对齐的优越能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preserving spatial and quantitative information in unpaired biomedical image-to-image translation.

Analysis of biological samples often requires integrating diverse imaging modalities to gain a comprehensive understanding. While supervised biomedical image translation methods have shown success in synthesizing images across different modalities, they require paired data, which are often impractical to obtain due to challenges in data alignment and sample preparation. Unpaired methods, while not requiring paired data, struggle to preserve the precise spatial and quantitative information essential for accurate analysis. To address these challenges, we introduce STABLE (spatial and quantitative information preserving biomedical image translation), an unpaired image-to-image translation method that emphasizes the preservation of spatial and quantitative information by enforcing information consistency and employing dynamic, learnable upsampling operators to achieve pixel-level accuracy. We validate STABLE across various biomedical imaging tasks, including translating calcium imaging data from zebrafish brains and virtual histological staining, demonstrating its superior ability to preserve spatial details, signal intensities, and accurate alignment compared to existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信