细菌乙酰转移酶PatZ催化和变构机制的结构基础。

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jun Bae Park, Gwanwoo Lee, Yu-Yeon Han, Dongwook Kim, Kyoo Heo, Jeesoo Kim, Juhee Park, Hyosuk Yun, Chul Won Lee, Hyun-Soo Cho, Jong-Seo Kim, Martin Steinegger, Yeong-Jae Seok, Soung-Hun Roh
{"title":"细菌乙酰转移酶PatZ催化和变构机制的结构基础。","authors":"Jun Bae Park, Gwanwoo Lee, Yu-Yeon Han, Dongwook Kim, Kyoo Heo, Jeesoo Kim, Juhee Park, Hyosuk Yun, Chul Won Lee, Hyun-Soo Cho, Jong-Seo Kim, Martin Steinegger, Yeong-Jae Seok, Soung-Hun Roh","doi":"10.1073/pnas.2419096122","DOIUrl":null,"url":null,"abstract":"<p><p>GCN5-related <i>N</i>-acetyltransferases (GNATs) are essential for regulating bacterial metabolism by acetylating specific target proteins. Despite their importance in bacterial physiology, the mechanisms behind their enzymatic and regulatory functions remain poorly understood. In this study, we investigated the structures of <i>Escherichia coli</i> protein acetyltransferase Z (PatZ), a Type I GNAT, and examined its ligand interactions, catalytic mechanism, and allosteric regulation. PatZ functions as a homotetramer, with each subunit comprising a catalytic and a regulatory domain. Our results demonstrate that the regulatory domain is vital for acetyltransferase activity, as it triggers cooperative conformational changes in the catalytic domain and directly aids in the formation of substrate-binding pockets. Additionally, a protein structure-based evolutionary analysis of bacterial GNAT types revealed a distinct regulatory domain pattern across phyla, highlighting its crucial role in responding to cellular energy levels.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 24","pages":"e2419096122"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184503/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural basis of the catalytic and allosteric mechanism of bacterial acetyltransferase PatZ.\",\"authors\":\"Jun Bae Park, Gwanwoo Lee, Yu-Yeon Han, Dongwook Kim, Kyoo Heo, Jeesoo Kim, Juhee Park, Hyosuk Yun, Chul Won Lee, Hyun-Soo Cho, Jong-Seo Kim, Martin Steinegger, Yeong-Jae Seok, Soung-Hun Roh\",\"doi\":\"10.1073/pnas.2419096122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>GCN5-related <i>N</i>-acetyltransferases (GNATs) are essential for regulating bacterial metabolism by acetylating specific target proteins. Despite their importance in bacterial physiology, the mechanisms behind their enzymatic and regulatory functions remain poorly understood. In this study, we investigated the structures of <i>Escherichia coli</i> protein acetyltransferase Z (PatZ), a Type I GNAT, and examined its ligand interactions, catalytic mechanism, and allosteric regulation. PatZ functions as a homotetramer, with each subunit comprising a catalytic and a regulatory domain. Our results demonstrate that the regulatory domain is vital for acetyltransferase activity, as it triggers cooperative conformational changes in the catalytic domain and directly aids in the formation of substrate-binding pockets. Additionally, a protein structure-based evolutionary analysis of bacterial GNAT types revealed a distinct regulatory domain pattern across phyla, highlighting its crucial role in responding to cellular energy levels.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"122 24\",\"pages\":\"e2419096122\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184503/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2419096122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2419096122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

gcn5相关的n -乙酰基转移酶(GNATs)是通过乙酰化特定靶蛋白来调节细菌代谢所必需的。尽管它们在细菌生理学中很重要,但它们的酶和调节功能背后的机制仍然知之甚少。在这项研究中,我们研究了大肠杆菌蛋白乙酰转移酶Z (PatZ)的结构,并研究了它的配体相互作用、催化机制和变构调控。PatZ的功能是同四聚体,每个亚基包括一个催化结构域和一个调节结构域。我们的研究结果表明,调控结构域对乙酰转移酶活性至关重要,因为它触发催化结构域的协同构象变化,并直接帮助形成底物结合口袋。此外,基于蛋白质结构的细菌GNAT类型进化分析揭示了跨门的不同调节结构域模式,突出了其在响应细胞能量水平方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural basis of the catalytic and allosteric mechanism of bacterial acetyltransferase PatZ.

GCN5-related N-acetyltransferases (GNATs) are essential for regulating bacterial metabolism by acetylating specific target proteins. Despite their importance in bacterial physiology, the mechanisms behind their enzymatic and regulatory functions remain poorly understood. In this study, we investigated the structures of Escherichia coli protein acetyltransferase Z (PatZ), a Type I GNAT, and examined its ligand interactions, catalytic mechanism, and allosteric regulation. PatZ functions as a homotetramer, with each subunit comprising a catalytic and a regulatory domain. Our results demonstrate that the regulatory domain is vital for acetyltransferase activity, as it triggers cooperative conformational changes in the catalytic domain and directly aids in the formation of substrate-binding pockets. Additionally, a protein structure-based evolutionary analysis of bacterial GNAT types revealed a distinct regulatory domain pattern across phyla, highlighting its crucial role in responding to cellular energy levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信