外延应变原子薄RuO2薄膜中的金属丰度和反常霍尔效应。

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Seung Gyo Jeong, Seungjun Lee, Bonnie Lin, Zhifei Yang, In Hyeok Choi, Jin Young Oh, Sehwan Song, Seung Wook Lee, Sreejith Nair, Rashmi Choudhary, Juhi Parikh, Sungkyun Park, Woo Seok Choi, Jong Seok Lee, James M LeBeau, Tony Low, Bharat Jalan
{"title":"外延应变原子薄RuO2薄膜中的金属丰度和反常霍尔效应。","authors":"Seung Gyo Jeong, Seungjun Lee, Bonnie Lin, Zhifei Yang, In Hyeok Choi, Jin Young Oh, Sehwan Song, Seung Wook Lee, Sreejith Nair, Rashmi Choudhary, Juhi Parikh, Sungkyun Park, Woo Seok Choi, Jong Seok Lee, James M LeBeau, Tony Low, Bharat Jalan","doi":"10.1073/pnas.2500831122","DOIUrl":null,"url":null,"abstract":"<p><p>The anomalous Hall effect (AHE), a hallmark of time-reversal symmetry breaking, has been reported in rutile RuO<sub>2</sub>, a debated metallic altermagnetic candidate. Previously, AHE in RuO<sub>2</sub> was observed only in strain-relaxed thick films under extremely high magnetic fields (~50 T). Yet, in ultrathin strained films with distinctive anisotropic electronic structures, there are no reports, likely due to disorder and defects suppressing metallicity thus hindering its detection. Here, we demonstrate that ultrathin, fully strained 2 nm TiO<sub>2</sub>/<i>t</i> nm RuO<sub>2</sub>/TiO<sub>2</sub> (110) heterostructures, grown by hybrid molecular beam epitaxy, retain metallicity and exhibit a sizeable AHE at a significantly lower magnetic field (< 9 T). Density functional theory calculations reveal that epitaxial strain stabilizes a noncompensated magnetic ground state and reconfigures magnetic ordering in RuO<sub>2</sub> (110) thin films. These findings establish ultrathin RuO<sub>2</sub> as a platform for strain-engineered magnetism and underscore the transformative potential of epitaxial design in advancing spintronic technologies.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 24","pages":"e2500831122"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184392/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metallicity and anomalous Hall effect in epitaxially strained, atomically thin RuO<sub>2</sub> films.\",\"authors\":\"Seung Gyo Jeong, Seungjun Lee, Bonnie Lin, Zhifei Yang, In Hyeok Choi, Jin Young Oh, Sehwan Song, Seung Wook Lee, Sreejith Nair, Rashmi Choudhary, Juhi Parikh, Sungkyun Park, Woo Seok Choi, Jong Seok Lee, James M LeBeau, Tony Low, Bharat Jalan\",\"doi\":\"10.1073/pnas.2500831122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The anomalous Hall effect (AHE), a hallmark of time-reversal symmetry breaking, has been reported in rutile RuO<sub>2</sub>, a debated metallic altermagnetic candidate. Previously, AHE in RuO<sub>2</sub> was observed only in strain-relaxed thick films under extremely high magnetic fields (~50 T). Yet, in ultrathin strained films with distinctive anisotropic electronic structures, there are no reports, likely due to disorder and defects suppressing metallicity thus hindering its detection. Here, we demonstrate that ultrathin, fully strained 2 nm TiO<sub>2</sub>/<i>t</i> nm RuO<sub>2</sub>/TiO<sub>2</sub> (110) heterostructures, grown by hybrid molecular beam epitaxy, retain metallicity and exhibit a sizeable AHE at a significantly lower magnetic field (< 9 T). Density functional theory calculations reveal that epitaxial strain stabilizes a noncompensated magnetic ground state and reconfigures magnetic ordering in RuO<sub>2</sub> (110) thin films. These findings establish ultrathin RuO<sub>2</sub> as a platform for strain-engineered magnetism and underscore the transformative potential of epitaxial design in advancing spintronic technologies.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"122 24\",\"pages\":\"e2500831122\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184392/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2500831122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2500831122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

反常霍尔效应(AHE),时间反转对称性破缺的标志,已报道金红石RuO2,一个有争议的金属交替候选。以前,只有在极高磁场(~50 T)下的应变松弛厚膜中才能观察到RuO2中的AHE。然而,在具有明显各向异性电子结构的超薄应变薄膜中,没有报道,可能是由于无序和缺陷抑制了金属丰度,从而阻碍了其检测。在这里,我们证明了通过杂化分子束外延生长的超薄,完全应变的2纳米TiO2/t纳米RuO2/TiO2(110)异质结构,在明显较低的磁场(< 9 t)下保留了金属丰度并表现出相当大的AHE。密度泛函理论计算表明,外延应变稳定了非补偿磁基态,并重新配置了RuO2(110)薄膜中的磁有序。这些发现奠定了超薄RuO2作为应变工程磁性的平台,并强调了外延设计在推进自旋电子技术方面的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metallicity and anomalous Hall effect in epitaxially strained, atomically thin RuO2 films.

The anomalous Hall effect (AHE), a hallmark of time-reversal symmetry breaking, has been reported in rutile RuO2, a debated metallic altermagnetic candidate. Previously, AHE in RuO2 was observed only in strain-relaxed thick films under extremely high magnetic fields (~50 T). Yet, in ultrathin strained films with distinctive anisotropic electronic structures, there are no reports, likely due to disorder and defects suppressing metallicity thus hindering its detection. Here, we demonstrate that ultrathin, fully strained 2 nm TiO2/t nm RuO2/TiO2 (110) heterostructures, grown by hybrid molecular beam epitaxy, retain metallicity and exhibit a sizeable AHE at a significantly lower magnetic field (< 9 T). Density functional theory calculations reveal that epitaxial strain stabilizes a noncompensated magnetic ground state and reconfigures magnetic ordering in RuO2 (110) thin films. These findings establish ultrathin RuO2 as a platform for strain-engineered magnetism and underscore the transformative potential of epitaxial design in advancing spintronic technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信