Eve Teyssier, Sabine Grat, David Landry, Mathilde Ouradou, Mélanie K Rich, Sébastien Fort, Jean Keller, Benoit Lefebvre, Pierre-Marc Delaux, Malick Mbengue
{"title":"植物溶酶基序受体样激酶在菌根中发挥祖先功能。","authors":"Eve Teyssier, Sabine Grat, David Landry, Mathilde Ouradou, Mélanie K Rich, Sébastien Fort, Jean Keller, Benoit Lefebvre, Pierre-Marc Delaux, Malick Mbengue","doi":"10.1073/pnas.2426063122","DOIUrl":null,"url":null,"abstract":"<p><p>Arbuscular mycorrhiza (AM) with soilborne Glomeromycota fungi was pivotal in the conquest of land by plants almost half a billion years ago. In flowering plants, it is hypothesized that AM is initiated by the perception of AM fungi-derived chito- and lipochito-oligosaccharides (COs/LCOs) in the host via Lysin Motif Receptor-Like Kinases (LysM-RLKs). However, it remains uncertain whether plant perception of these molecules is a prerequisite for AM establishment and for its origin. Here, we made use of the reduced LysM-RLK complement present in the liverwort <i>Marchantia paleacea</i> to assess the conservation of the role played by this class of receptors during AM and in CO/LCO perception. Our reverse genetic approach demonstrates the critical function of a single LysM-RLK, MpaLYKa, in AM formation, thereby supporting an ancestral function for this receptor in symbiosis. Binding studies, cytosolic calcium variation recordings and genome-wide transcriptomics indicate that another LysM-RLK of <i>M. paleacea</i>, MpaLYR, is also required for triggering a response to COs and tested LCOs, despite being dispensable for AM formation. Collectively, our results demonstrate that the perception of symbionts by LysM-RLK is an ancestral feature in land plants, and suggest the existence of yet-uncharacterized AM fungi signals.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 24","pages":"e2426063122"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184373/pdf/","citationCount":"0","resultStr":"{\"title\":\"A plant Lysin Motif Receptor-Like Kinase plays an ancestral function in mycorrhiza.\",\"authors\":\"Eve Teyssier, Sabine Grat, David Landry, Mathilde Ouradou, Mélanie K Rich, Sébastien Fort, Jean Keller, Benoit Lefebvre, Pierre-Marc Delaux, Malick Mbengue\",\"doi\":\"10.1073/pnas.2426063122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arbuscular mycorrhiza (AM) with soilborne Glomeromycota fungi was pivotal in the conquest of land by plants almost half a billion years ago. In flowering plants, it is hypothesized that AM is initiated by the perception of AM fungi-derived chito- and lipochito-oligosaccharides (COs/LCOs) in the host via Lysin Motif Receptor-Like Kinases (LysM-RLKs). However, it remains uncertain whether plant perception of these molecules is a prerequisite for AM establishment and for its origin. Here, we made use of the reduced LysM-RLK complement present in the liverwort <i>Marchantia paleacea</i> to assess the conservation of the role played by this class of receptors during AM and in CO/LCO perception. Our reverse genetic approach demonstrates the critical function of a single LysM-RLK, MpaLYKa, in AM formation, thereby supporting an ancestral function for this receptor in symbiosis. Binding studies, cytosolic calcium variation recordings and genome-wide transcriptomics indicate that another LysM-RLK of <i>M. paleacea</i>, MpaLYR, is also required for triggering a response to COs and tested LCOs, despite being dispensable for AM formation. Collectively, our results demonstrate that the perception of symbionts by LysM-RLK is an ancestral feature in land plants, and suggest the existence of yet-uncharacterized AM fungi signals.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"122 24\",\"pages\":\"e2426063122\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2426063122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2426063122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A plant Lysin Motif Receptor-Like Kinase plays an ancestral function in mycorrhiza.
Arbuscular mycorrhiza (AM) with soilborne Glomeromycota fungi was pivotal in the conquest of land by plants almost half a billion years ago. In flowering plants, it is hypothesized that AM is initiated by the perception of AM fungi-derived chito- and lipochito-oligosaccharides (COs/LCOs) in the host via Lysin Motif Receptor-Like Kinases (LysM-RLKs). However, it remains uncertain whether plant perception of these molecules is a prerequisite for AM establishment and for its origin. Here, we made use of the reduced LysM-RLK complement present in the liverwort Marchantia paleacea to assess the conservation of the role played by this class of receptors during AM and in CO/LCO perception. Our reverse genetic approach demonstrates the critical function of a single LysM-RLK, MpaLYKa, in AM formation, thereby supporting an ancestral function for this receptor in symbiosis. Binding studies, cytosolic calcium variation recordings and genome-wide transcriptomics indicate that another LysM-RLK of M. paleacea, MpaLYR, is also required for triggering a response to COs and tested LCOs, despite being dispensable for AM formation. Collectively, our results demonstrate that the perception of symbionts by LysM-RLK is an ancestral feature in land plants, and suggest the existence of yet-uncharacterized AM fungi signals.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.