{"title":"6个亚高寒草甸共花物种柱头花粉负荷的时空变化特征","authors":"Tao Zhang, Qiang Fang","doi":"10.1016/j.pld.2024.12.003","DOIUrl":null,"url":null,"abstract":"<p><p>Co-flowering species may have evolved strategies to avoid or tolerate the adverse effects of heterospecific pollen deposition. However, the precondition for this evolutionary response is spatial-temporal stability, an aspect currently understudied. Here, we examined the spatial-temporal stability in conspecific and heterospecific pollen loads on stigmas across 19 co-flowering species in six sub-alpine meadow communities over four consecutive years. We found that, although conspecific and heterospecific pollen loads, as well as proportions of heterospecific pollen, differed significantly among species, with heterospecific pollen proportion ranging from 0.1% to 41.8%, variation in heterospecific pollen proportion among species was stable across different years and communities. The most important predictor of variation in both conspecific and heterospecific pollen loads, as well as heterospecific pollen proportions, was species identity; furthermore, this factor was independent of phylogenetic relationship. The proportion of heterospecific pollen varied less within species that had high proportions of heterospecific pollen. Furthermore, both the proportion of heterospecific pollen and its coefficient of variation were more strongly driven by heterospecific pollen than by conspecific pollen. Our study suggests that variation in stigmatic pollen load among co-flowering species is spatially and temporally consistent, a precondition for the tolerance-avoidance strategy. This study provides new insights into how different plant species respond to heterospecific pollen deposition.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 3","pages":"489-498"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12146854/pdf/","citationCount":"0","resultStr":"{\"title\":\"Consistent spatial-temporal variations of stigmatic pollen load among co-flowering species across six sub-alpine meadows.\",\"authors\":\"Tao Zhang, Qiang Fang\",\"doi\":\"10.1016/j.pld.2024.12.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Co-flowering species may have evolved strategies to avoid or tolerate the adverse effects of heterospecific pollen deposition. However, the precondition for this evolutionary response is spatial-temporal stability, an aspect currently understudied. Here, we examined the spatial-temporal stability in conspecific and heterospecific pollen loads on stigmas across 19 co-flowering species in six sub-alpine meadow communities over four consecutive years. We found that, although conspecific and heterospecific pollen loads, as well as proportions of heterospecific pollen, differed significantly among species, with heterospecific pollen proportion ranging from 0.1% to 41.8%, variation in heterospecific pollen proportion among species was stable across different years and communities. The most important predictor of variation in both conspecific and heterospecific pollen loads, as well as heterospecific pollen proportions, was species identity; furthermore, this factor was independent of phylogenetic relationship. The proportion of heterospecific pollen varied less within species that had high proportions of heterospecific pollen. Furthermore, both the proportion of heterospecific pollen and its coefficient of variation were more strongly driven by heterospecific pollen than by conspecific pollen. Our study suggests that variation in stigmatic pollen load among co-flowering species is spatially and temporally consistent, a precondition for the tolerance-avoidance strategy. This study provides new insights into how different plant species respond to heterospecific pollen deposition.</p>\",\"PeriodicalId\":20224,\"journal\":{\"name\":\"Plant Diversity\",\"volume\":\"47 3\",\"pages\":\"489-498\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12146854/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pld.2024.12.003\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2024.12.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Consistent spatial-temporal variations of stigmatic pollen load among co-flowering species across six sub-alpine meadows.
Co-flowering species may have evolved strategies to avoid or tolerate the adverse effects of heterospecific pollen deposition. However, the precondition for this evolutionary response is spatial-temporal stability, an aspect currently understudied. Here, we examined the spatial-temporal stability in conspecific and heterospecific pollen loads on stigmas across 19 co-flowering species in six sub-alpine meadow communities over four consecutive years. We found that, although conspecific and heterospecific pollen loads, as well as proportions of heterospecific pollen, differed significantly among species, with heterospecific pollen proportion ranging from 0.1% to 41.8%, variation in heterospecific pollen proportion among species was stable across different years and communities. The most important predictor of variation in both conspecific and heterospecific pollen loads, as well as heterospecific pollen proportions, was species identity; furthermore, this factor was independent of phylogenetic relationship. The proportion of heterospecific pollen varied less within species that had high proportions of heterospecific pollen. Furthermore, both the proportion of heterospecific pollen and its coefficient of variation were more strongly driven by heterospecific pollen than by conspecific pollen. Our study suggests that variation in stigmatic pollen load among co-flowering species is spatially and temporally consistent, a precondition for the tolerance-avoidance strategy. This study provides new insights into how different plant species respond to heterospecific pollen deposition.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry