Tamer Eliyan, Saad F Al-Gahtani, Z M S Elbarbary, Fady Wadie
{"title":"风电场雷击过电压的表征。","authors":"Tamer Eliyan, Saad F Al-Gahtani, Z M S Elbarbary, Fady Wadie","doi":"10.1371/journal.pone.0325514","DOIUrl":null,"url":null,"abstract":"<p><p>Wind farms are exposed to various weather hazards, including lightning strikes, which can pose significant risks. However, the impact of different wind farm topologies on the magnitude of lightning-induced overvoltages has not been extensively studied, creating a gap in existing literature. This paper addresses this gap by analyzing the characteristics of lightning-induced overvoltages injected into the grid for various wind farm topologies. The scientific scope of this study is to evaluate the influence of wind farm topology on the severity of different types of lightning-induced overvoltages including positive, negative, and double-peaked lightning strikes, using simulation-based analysis. The topologies tested include radial, single-sided ring (SSR), double-sided ring (DSR), and star topologies. The results demonstrate that radial topology leads to the highest overvoltage injection, while switching to SSR, DSR, or star topologies results in reductions of overvoltage by 11.5% to 51.0%, 39.5% to 66.0%, and 62.3% to 89.0%, respectively. These results support a topology-based risk assessment approach, offering clear guidance for selecting configurations that improve lightning resilience.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 6","pages":"e0325514"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151421/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of lightning-induced overvoltages in wind farms.\",\"authors\":\"Tamer Eliyan, Saad F Al-Gahtani, Z M S Elbarbary, Fady Wadie\",\"doi\":\"10.1371/journal.pone.0325514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wind farms are exposed to various weather hazards, including lightning strikes, which can pose significant risks. However, the impact of different wind farm topologies on the magnitude of lightning-induced overvoltages has not been extensively studied, creating a gap in existing literature. This paper addresses this gap by analyzing the characteristics of lightning-induced overvoltages injected into the grid for various wind farm topologies. The scientific scope of this study is to evaluate the influence of wind farm topology on the severity of different types of lightning-induced overvoltages including positive, negative, and double-peaked lightning strikes, using simulation-based analysis. The topologies tested include radial, single-sided ring (SSR), double-sided ring (DSR), and star topologies. The results demonstrate that radial topology leads to the highest overvoltage injection, while switching to SSR, DSR, or star topologies results in reductions of overvoltage by 11.5% to 51.0%, 39.5% to 66.0%, and 62.3% to 89.0%, respectively. These results support a topology-based risk assessment approach, offering clear guidance for selecting configurations that improve lightning resilience.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 6\",\"pages\":\"e0325514\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151421/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0325514\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0325514","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Characterization of lightning-induced overvoltages in wind farms.
Wind farms are exposed to various weather hazards, including lightning strikes, which can pose significant risks. However, the impact of different wind farm topologies on the magnitude of lightning-induced overvoltages has not been extensively studied, creating a gap in existing literature. This paper addresses this gap by analyzing the characteristics of lightning-induced overvoltages injected into the grid for various wind farm topologies. The scientific scope of this study is to evaluate the influence of wind farm topology on the severity of different types of lightning-induced overvoltages including positive, negative, and double-peaked lightning strikes, using simulation-based analysis. The topologies tested include radial, single-sided ring (SSR), double-sided ring (DSR), and star topologies. The results demonstrate that radial topology leads to the highest overvoltage injection, while switching to SSR, DSR, or star topologies results in reductions of overvoltage by 11.5% to 51.0%, 39.5% to 66.0%, and 62.3% to 89.0%, respectively. These results support a topology-based risk assessment approach, offering clear guidance for selecting configurations that improve lightning resilience.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage