Guadalupe Rojas-Sanchez, Jorge Calzada-Martinez, Brandon McMahon, Aaron C Petrey, Gabriela Dveksler, Gerardo P Espino-Solis, Orlando Esparza, Giovanny Hernandez, Dennis Le, Eric P Wartchow, Ken Jones, Lucas H Ting, Catherine Jankowski, Marguerite R Kelher, Marilyn Manco-Johnson, Marie L Feser, Kevin D Deane, Travis Nemkov, Angelo D'Alessandro, Andrew Thorburn, Paola Maycotte, José A López, Pavel Davizon-Castillo
{"title":"TNFα通过下调Syntaxin-17抑制自噬和破坏代谢而损害血小板功能。","authors":"Guadalupe Rojas-Sanchez, Jorge Calzada-Martinez, Brandon McMahon, Aaron C Petrey, Gabriela Dveksler, Gerardo P Espino-Solis, Orlando Esparza, Giovanny Hernandez, Dennis Le, Eric P Wartchow, Ken Jones, Lucas H Ting, Catherine Jankowski, Marguerite R Kelher, Marilyn Manco-Johnson, Marie L Feser, Kevin D Deane, Travis Nemkov, Angelo D'Alessandro, Andrew Thorburn, Paola Maycotte, José A López, Pavel Davizon-Castillo","doi":"10.1172/JCI186065","DOIUrl":null,"url":null,"abstract":"<p><p>Platelets play a dual role in hemostasis and inflammation-associated thrombosis and hemorrhage. While the mechanisms linking inflammation to platelet dysfunction remain poorly understood, our previous work demonstrated that TNFα alters mitochondrial mass, platelet activation, and autophagy-related pathways in megakaryocytes. Here, we hypothesized that TNFα impairs platelet function by disrupting autophagy, a process critical for mitochondrial health and cellular metabolism. Using human and murine models of TNFα-driven diseases, including myeloproliferative neoplasms and rheumatoid arthritis, we found that TNFα downregulates STX17, a key mediator of autophagosome-lysosome fusion. This disruption inhibited autophagy, leading to the accumulation of dysfunctional mitochondria and reduced mitochondrial respiration. These metabolic alterations compromised platelet-driven clot contraction, a process linked to thrombotic and hemorrhagic complications. Our findings reveal a mechanism by which TNFα disrupts hemostasis through autophagy inhibition, highlighting TNFα as a critical regulator of platelet metabolism and function. This study provides new insights into inflammation-associated pathologies and suggests autophagy-targeting strategies as potential therapeutic avenues to restore hemostatic balance.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TNFα impairs platelet function by inhibiting autophagy and disrupting metabolism via Syntaxin-17 downregulation.\",\"authors\":\"Guadalupe Rojas-Sanchez, Jorge Calzada-Martinez, Brandon McMahon, Aaron C Petrey, Gabriela Dveksler, Gerardo P Espino-Solis, Orlando Esparza, Giovanny Hernandez, Dennis Le, Eric P Wartchow, Ken Jones, Lucas H Ting, Catherine Jankowski, Marguerite R Kelher, Marilyn Manco-Johnson, Marie L Feser, Kevin D Deane, Travis Nemkov, Angelo D'Alessandro, Andrew Thorburn, Paola Maycotte, José A López, Pavel Davizon-Castillo\",\"doi\":\"10.1172/JCI186065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Platelets play a dual role in hemostasis and inflammation-associated thrombosis and hemorrhage. While the mechanisms linking inflammation to platelet dysfunction remain poorly understood, our previous work demonstrated that TNFα alters mitochondrial mass, platelet activation, and autophagy-related pathways in megakaryocytes. Here, we hypothesized that TNFα impairs platelet function by disrupting autophagy, a process critical for mitochondrial health and cellular metabolism. Using human and murine models of TNFα-driven diseases, including myeloproliferative neoplasms and rheumatoid arthritis, we found that TNFα downregulates STX17, a key mediator of autophagosome-lysosome fusion. This disruption inhibited autophagy, leading to the accumulation of dysfunctional mitochondria and reduced mitochondrial respiration. These metabolic alterations compromised platelet-driven clot contraction, a process linked to thrombotic and hemorrhagic complications. Our findings reveal a mechanism by which TNFα disrupts hemostasis through autophagy inhibition, highlighting TNFα as a critical regulator of platelet metabolism and function. This study provides new insights into inflammation-associated pathologies and suggests autophagy-targeting strategies as potential therapeutic avenues to restore hemostatic balance.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.6000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI186065\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI186065","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
TNFα impairs platelet function by inhibiting autophagy and disrupting metabolism via Syntaxin-17 downregulation.
Platelets play a dual role in hemostasis and inflammation-associated thrombosis and hemorrhage. While the mechanisms linking inflammation to platelet dysfunction remain poorly understood, our previous work demonstrated that TNFα alters mitochondrial mass, platelet activation, and autophagy-related pathways in megakaryocytes. Here, we hypothesized that TNFα impairs platelet function by disrupting autophagy, a process critical for mitochondrial health and cellular metabolism. Using human and murine models of TNFα-driven diseases, including myeloproliferative neoplasms and rheumatoid arthritis, we found that TNFα downregulates STX17, a key mediator of autophagosome-lysosome fusion. This disruption inhibited autophagy, leading to the accumulation of dysfunctional mitochondria and reduced mitochondrial respiration. These metabolic alterations compromised platelet-driven clot contraction, a process linked to thrombotic and hemorrhagic complications. Our findings reveal a mechanism by which TNFα disrupts hemostasis through autophagy inhibition, highlighting TNFα as a critical regulator of platelet metabolism and function. This study provides new insights into inflammation-associated pathologies and suggests autophagy-targeting strategies as potential therapeutic avenues to restore hemostatic balance.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.