Brandon J Coombes, Inna G Ovsyannikova, Daniel J Schaid, Nathaniel D Warner, Gregory A Poland, Richard B Kennedy
{"title":"流行性腮腺炎疫苗细胞免疫反应的多基因预测。","authors":"Brandon J Coombes, Inna G Ovsyannikova, Daniel J Schaid, Nathaniel D Warner, Gregory A Poland, Richard B Kennedy","doi":"10.1038/s41435-025-00335-5","DOIUrl":null,"url":null,"abstract":"<p><p>In this report, we provide a follow-up analysis of a previously published genome-wide association study (GWAS) evaluating the effect of genetic polymorphisms on inter-individual variations in cell-mediated immune responses to mumps vaccine. Here we report the results of a polygenic score (PGS) analysis showing how common variants can predict mumps vaccine response. We found higher PGS for IFNγ, IL-2, and TNFα were predictive of higher post-vaccine IFNγ (p value = 2e-6), IL-2 (p = 2e-7), and TNFα (p = 0.004) levels, respectively. Control of immune responses after vaccination is complex and polygenic in nature. Our results suggest that the PGS-based approach enables better capture of the combined genetic effects that contribute to mumps vaccine-induced immunity, potentially offering a more comprehensive understanding than traditional single-variant GWAS. This approach will likely have broad utility in studying genetic control of immune responses to other vaccines and to infectious diseases.</p>","PeriodicalId":12691,"journal":{"name":"Genes and immunity","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polygenic prediction of cellular immune responses to mumps vaccine.\",\"authors\":\"Brandon J Coombes, Inna G Ovsyannikova, Daniel J Schaid, Nathaniel D Warner, Gregory A Poland, Richard B Kennedy\",\"doi\":\"10.1038/s41435-025-00335-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this report, we provide a follow-up analysis of a previously published genome-wide association study (GWAS) evaluating the effect of genetic polymorphisms on inter-individual variations in cell-mediated immune responses to mumps vaccine. Here we report the results of a polygenic score (PGS) analysis showing how common variants can predict mumps vaccine response. We found higher PGS for IFNγ, IL-2, and TNFα were predictive of higher post-vaccine IFNγ (p value = 2e-6), IL-2 (p = 2e-7), and TNFα (p = 0.004) levels, respectively. Control of immune responses after vaccination is complex and polygenic in nature. Our results suggest that the PGS-based approach enables better capture of the combined genetic effects that contribute to mumps vaccine-induced immunity, potentially offering a more comprehensive understanding than traditional single-variant GWAS. This approach will likely have broad utility in studying genetic control of immune responses to other vaccines and to infectious diseases.</p>\",\"PeriodicalId\":12691,\"journal\":{\"name\":\"Genes and immunity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41435-025-00335-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41435-025-00335-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Polygenic prediction of cellular immune responses to mumps vaccine.
In this report, we provide a follow-up analysis of a previously published genome-wide association study (GWAS) evaluating the effect of genetic polymorphisms on inter-individual variations in cell-mediated immune responses to mumps vaccine. Here we report the results of a polygenic score (PGS) analysis showing how common variants can predict mumps vaccine response. We found higher PGS for IFNγ, IL-2, and TNFα were predictive of higher post-vaccine IFNγ (p value = 2e-6), IL-2 (p = 2e-7), and TNFα (p = 0.004) levels, respectively. Control of immune responses after vaccination is complex and polygenic in nature. Our results suggest that the PGS-based approach enables better capture of the combined genetic effects that contribute to mumps vaccine-induced immunity, potentially offering a more comprehensive understanding than traditional single-variant GWAS. This approach will likely have broad utility in studying genetic control of immune responses to other vaccines and to infectious diseases.
期刊介绍:
Genes & Immunity emphasizes studies investigating how genetic, genomic and functional variations affect immune cells and the immune system, and associated processes in the regulation of health and disease. It further highlights articles on the transcriptional and posttranslational control of gene products involved in signaling pathways regulating immune cells, and protective and destructive immune responses.