Li-Ying Zhang, Yue-Yue Wang, Ri Wen, Tie-Ning Zhang, Ni Yang
{"title":"组蛋白去乙酰化酶及其抑制剂在心血管疾病中的作用。","authors":"Li-Ying Zhang, Yue-Yue Wang, Ri Wen, Tie-Ning Zhang, Ni Yang","doi":"10.1111/cpr.70077","DOIUrl":null,"url":null,"abstract":"<p><p>Histone deacetylase(HDAC) is Zn<sup>2+</sup>-dependent histone deacetylases that regulate the key signalling pathways involved in gene transcription. 11 isoforms have been identified. Recent in vitro and in vivo studies have shown that HDACs are involved in the pathophysiology of cardiovascular diseases (CVDs) and play important roles in cell proliferation, differentiation and mitochondrial metabolism. In terms of physiological mechanisms, HDAC1-6 may play important roles in normal cardiac development and physiological function, while HDAC7 regulates angiogenesis. In pathological processes, class I HDACs function as pro-hypertrophic mediators, whereas class II HDACs act as anti-hypertrophic mediators. HDAC1-3, 6, 9, and 11 participate in lipid cell formation, oxidative stress and endothelial cell injury through multiple signalling pathways, contributing to the pathogenesis of atherosclerosis. In addition, HDACs also play a role in CVDs such as heart failure, myocardial fibrosis, pulmonary hypertension and diabetic cardiomyopathy. In view of this, we reviewed the regulatory pathways and molecular targets of HDACs in the pathogenesis of CVD. In addition, we summarise the current discovery of inhibitors targeting HDACs. HDAC inhibitors have shown promising therapeutic progress in animal experiments, but clinical trials to demonstrate their efficacy in humans are still lacking. A better understanding of the role of HDACs in CVD provides a new direction for the development of therapeutic interventions and holds significant research value.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e70077"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Histone Deacetylase and Inhibitors in Cardiovascular Diseases.\",\"authors\":\"Li-Ying Zhang, Yue-Yue Wang, Ri Wen, Tie-Ning Zhang, Ni Yang\",\"doi\":\"10.1111/cpr.70077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Histone deacetylase(HDAC) is Zn<sup>2+</sup>-dependent histone deacetylases that regulate the key signalling pathways involved in gene transcription. 11 isoforms have been identified. Recent in vitro and in vivo studies have shown that HDACs are involved in the pathophysiology of cardiovascular diseases (CVDs) and play important roles in cell proliferation, differentiation and mitochondrial metabolism. In terms of physiological mechanisms, HDAC1-6 may play important roles in normal cardiac development and physiological function, while HDAC7 regulates angiogenesis. In pathological processes, class I HDACs function as pro-hypertrophic mediators, whereas class II HDACs act as anti-hypertrophic mediators. HDAC1-3, 6, 9, and 11 participate in lipid cell formation, oxidative stress and endothelial cell injury through multiple signalling pathways, contributing to the pathogenesis of atherosclerosis. In addition, HDACs also play a role in CVDs such as heart failure, myocardial fibrosis, pulmonary hypertension and diabetic cardiomyopathy. In view of this, we reviewed the regulatory pathways and molecular targets of HDACs in the pathogenesis of CVD. In addition, we summarise the current discovery of inhibitors targeting HDACs. HDAC inhibitors have shown promising therapeutic progress in animal experiments, but clinical trials to demonstrate their efficacy in humans are still lacking. A better understanding of the role of HDACs in CVD provides a new direction for the development of therapeutic interventions and holds significant research value.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e70077\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.70077\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.70077","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Role of Histone Deacetylase and Inhibitors in Cardiovascular Diseases.
Histone deacetylase(HDAC) is Zn2+-dependent histone deacetylases that regulate the key signalling pathways involved in gene transcription. 11 isoforms have been identified. Recent in vitro and in vivo studies have shown that HDACs are involved in the pathophysiology of cardiovascular diseases (CVDs) and play important roles in cell proliferation, differentiation and mitochondrial metabolism. In terms of physiological mechanisms, HDAC1-6 may play important roles in normal cardiac development and physiological function, while HDAC7 regulates angiogenesis. In pathological processes, class I HDACs function as pro-hypertrophic mediators, whereas class II HDACs act as anti-hypertrophic mediators. HDAC1-3, 6, 9, and 11 participate in lipid cell formation, oxidative stress and endothelial cell injury through multiple signalling pathways, contributing to the pathogenesis of atherosclerosis. In addition, HDACs also play a role in CVDs such as heart failure, myocardial fibrosis, pulmonary hypertension and diabetic cardiomyopathy. In view of this, we reviewed the regulatory pathways and molecular targets of HDACs in the pathogenesis of CVD. In addition, we summarise the current discovery of inhibitors targeting HDACs. HDAC inhibitors have shown promising therapeutic progress in animal experiments, but clinical trials to demonstrate their efficacy in humans are still lacking. A better understanding of the role of HDACs in CVD provides a new direction for the development of therapeutic interventions and holds significant research value.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.