基于CRISPR系统的细菌外膜泡增强T细胞免疫以增强癌症免疫治疗。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hongjin Wang, Hengji Zhan, Bolin Pan, Leli Zeng, Zehua Chen, Sen Liu, Qiang Zhang, Xuwei Hong, Junlin Lu, Xinrou Lin, Xiao Zhao, Jiajian Lai, Kaiwen Jie, Ye Li, Jianmei Zhong, Shengmeng Peng, Siting Chen, Changhao Chen, Wenlong Zhong, Shaoxu Wu, Yihang Pan, Tianxin Lin, Xu Chen
{"title":"基于CRISPR系统的细菌外膜泡增强T细胞免疫以增强癌症免疫治疗。","authors":"Hongjin Wang, Hengji Zhan, Bolin Pan, Leli Zeng, Zehua Chen, Sen Liu, Qiang Zhang, Xuwei Hong, Junlin Lu, Xinrou Lin, Xiao Zhao, Jiajian Lai, Kaiwen Jie, Ye Li, Jianmei Zhong, Shengmeng Peng, Siting Chen, Changhao Chen, Wenlong Zhong, Shaoxu Wu, Yihang Pan, Tianxin Lin, Xu Chen","doi":"10.1002/adma.202501565","DOIUrl":null,"url":null,"abstract":"<p><p>Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment but only benefits a subset of patients because of insufficient infiltration and inactivation of effector T cells. Bacterial outer membrane vesicles (OMVs) can activate immunity and deliver therapeutic agents for immunotherapy. However, efficiently targeting and packaging therapeutic molecules into OMVs remains challenging. Here, the engineered E. coli BL21-derived OMVs enable the packaging of multiple genes, resulting in a 7-fold increase in DNA enrichment efficiency and gene silencing in vitro. Moreover, the engineered OMVs carrying genes encoding CXCL9 and IL12 (OMV-C9I12) reprogram tumor cells to secrete these factors, significantly enhancing T-cell chemotaxis and activation. More importantly, this system markedly inhibits tumors, extends survival, and synergizes with anti-PD-1/PD-L1 therapy in murine MB49 and B16F10 tumor models. Single-cell RNA sequencing (scRNA-seq) further reveals significant upregulation of T-cell chemotaxis and activation-related pathways following OMV-C9I12 treatment. Finally, OMV-C9I12 potentiates T cell-mediated immunotherapy and suppresses the growth of bladder and breast cancer tumors in humanized mouse models. These findings highlight the potential of this engineered OMV platform for cancer gene therapy and provide novel strategies to overcome resistance to immunotherapy.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2501565"},"PeriodicalIF":27.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering CRISPR System-Based Bacterial Outer Membrane Vesicle Potentiates T Cell Immunity for Enhanced Cancer Immunotherapy.\",\"authors\":\"Hongjin Wang, Hengji Zhan, Bolin Pan, Leli Zeng, Zehua Chen, Sen Liu, Qiang Zhang, Xuwei Hong, Junlin Lu, Xinrou Lin, Xiao Zhao, Jiajian Lai, Kaiwen Jie, Ye Li, Jianmei Zhong, Shengmeng Peng, Siting Chen, Changhao Chen, Wenlong Zhong, Shaoxu Wu, Yihang Pan, Tianxin Lin, Xu Chen\",\"doi\":\"10.1002/adma.202501565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment but only benefits a subset of patients because of insufficient infiltration and inactivation of effector T cells. Bacterial outer membrane vesicles (OMVs) can activate immunity and deliver therapeutic agents for immunotherapy. However, efficiently targeting and packaging therapeutic molecules into OMVs remains challenging. Here, the engineered E. coli BL21-derived OMVs enable the packaging of multiple genes, resulting in a 7-fold increase in DNA enrichment efficiency and gene silencing in vitro. Moreover, the engineered OMVs carrying genes encoding CXCL9 and IL12 (OMV-C9I12) reprogram tumor cells to secrete these factors, significantly enhancing T-cell chemotaxis and activation. More importantly, this system markedly inhibits tumors, extends survival, and synergizes with anti-PD-1/PD-L1 therapy in murine MB49 and B16F10 tumor models. Single-cell RNA sequencing (scRNA-seq) further reveals significant upregulation of T-cell chemotaxis and activation-related pathways following OMV-C9I12 treatment. Finally, OMV-C9I12 potentiates T cell-mediated immunotherapy and suppresses the growth of bladder and breast cancer tumors in humanized mouse models. These findings highlight the potential of this engineered OMV platform for cancer gene therapy and provide novel strategies to overcome resistance to immunotherapy.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\" \",\"pages\":\"e2501565\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202501565\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202501565","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

免疫检查点阻断(ICB)疗法已经彻底改变了癌症治疗,但由于效应T细胞浸润不足和失活,只能使一部分患者受益。细菌外膜囊泡(OMVs)具有激活免疫和递送治疗药物的功能。然而,有效地靶向和包装治疗分子到omv仍然具有挑战性。在这里,经过改造的大肠杆菌bl21衍生的omv能够包装多个基因,从而使DNA富集效率提高7倍,并在体外实现基因沉默。此外,携带编码CXCL9和IL12基因的工程omv (OMV-C9I12)对肿瘤细胞进行重编程,使其分泌这些因子,显著增强t细胞趋化性和活化。更重要的是,该系统在小鼠MB49和B16F10肿瘤模型中显著抑制肿瘤,延长生存期,并与抗pd -1/PD-L1治疗协同作用。单细胞RNA测序(scRNA-seq)进一步揭示了OMV-C9I12治疗后t细胞趋化性和激活相关途径的显著上调。最后,在人源化小鼠模型中,OMV-C9I12增强T细胞介导的免疫治疗并抑制膀胱癌和乳腺癌肿瘤的生长。这些发现突出了这种工程OMV平台用于癌症基因治疗的潜力,并提供了克服免疫治疗耐药性的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering CRISPR System-Based Bacterial Outer Membrane Vesicle Potentiates T Cell Immunity for Enhanced Cancer Immunotherapy.

Engineering CRISPR System-Based Bacterial Outer Membrane Vesicle Potentiates T Cell Immunity for Enhanced Cancer Immunotherapy.

Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment but only benefits a subset of patients because of insufficient infiltration and inactivation of effector T cells. Bacterial outer membrane vesicles (OMVs) can activate immunity and deliver therapeutic agents for immunotherapy. However, efficiently targeting and packaging therapeutic molecules into OMVs remains challenging. Here, the engineered E. coli BL21-derived OMVs enable the packaging of multiple genes, resulting in a 7-fold increase in DNA enrichment efficiency and gene silencing in vitro. Moreover, the engineered OMVs carrying genes encoding CXCL9 and IL12 (OMV-C9I12) reprogram tumor cells to secrete these factors, significantly enhancing T-cell chemotaxis and activation. More importantly, this system markedly inhibits tumors, extends survival, and synergizes with anti-PD-1/PD-L1 therapy in murine MB49 and B16F10 tumor models. Single-cell RNA sequencing (scRNA-seq) further reveals significant upregulation of T-cell chemotaxis and activation-related pathways following OMV-C9I12 treatment. Finally, OMV-C9I12 potentiates T cell-mediated immunotherapy and suppresses the growth of bladder and breast cancer tumors in humanized mouse models. These findings highlight the potential of this engineered OMV platform for cancer gene therapy and provide novel strategies to overcome resistance to immunotherapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信