Patrick M A James, Julia T Fang, Julian Wittische, Michel Cusson, Jeremy Larroque, Amanda Roe, Rob Johns
{"title":"利用个体基因型将物候上不同步的飞蛾分配给源种群。","authors":"Patrick M A James, Julia T Fang, Julian Wittische, Michel Cusson, Jeremy Larroque, Amanda Roe, Rob Johns","doi":"10.1111/mec.17832","DOIUrl":null,"url":null,"abstract":"<p><p>The spruce budworm (Choristoneura fumiferana; SBW) is a periodically outbreaking forest insect pest that affects the boreal forests of North America through extensive defoliation and tree mortality. Causes of widespread spatial synchrony of SBW outbreaks remain a key question in the ecology and management of this species. While the Moran effect (correlated favourable environmental conditions) and density-dependent dispersal (from epicentres of demographic explosions) have been proposed and supported as drivers of synchronised outbreaks, the relative contribution of long-distance dispersal is still poorly understood. In this study, we use a novel approach to distinguish resident from migrant moths and to assign migrants to likely source clusters with the goal of better characterising regional dispersal. First, we characterise the genetic diversity and structure of resident SBW larvae and three phenologically separated groups of moths over one flight season using Genotyping-by-Sequencing. Then, using a novel machine learning approach, we assign putative migrants to their likely source populations. We hypothesised that migrant moths and resident larvae would be genetically distinct and could be assigned to source populations. Our findings revealed complex patterns of moth dispersal and population differentiation within a single season, including two spatially overlapping genetic clusters. We observed subtle but significant genetic differences between resident larvae and migrant moths, supporting the hypothesis that long-distance dispersal contributes to outbreak dynamics and synchrony. These insights enhance our understanding of SBW population dynamics and suggest that effective management strategies, such as the Early Intervention Strategy (EIS), must account for the role of dispersal in mitigating the detrimental effects of major outbreaks.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17832"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assigning Phenologically Asynchronous Moths to Source Populations Using Individual Genotypes.\",\"authors\":\"Patrick M A James, Julia T Fang, Julian Wittische, Michel Cusson, Jeremy Larroque, Amanda Roe, Rob Johns\",\"doi\":\"10.1111/mec.17832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spruce budworm (Choristoneura fumiferana; SBW) is a periodically outbreaking forest insect pest that affects the boreal forests of North America through extensive defoliation and tree mortality. Causes of widespread spatial synchrony of SBW outbreaks remain a key question in the ecology and management of this species. While the Moran effect (correlated favourable environmental conditions) and density-dependent dispersal (from epicentres of demographic explosions) have been proposed and supported as drivers of synchronised outbreaks, the relative contribution of long-distance dispersal is still poorly understood. In this study, we use a novel approach to distinguish resident from migrant moths and to assign migrants to likely source clusters with the goal of better characterising regional dispersal. First, we characterise the genetic diversity and structure of resident SBW larvae and three phenologically separated groups of moths over one flight season using Genotyping-by-Sequencing. Then, using a novel machine learning approach, we assign putative migrants to their likely source populations. We hypothesised that migrant moths and resident larvae would be genetically distinct and could be assigned to source populations. Our findings revealed complex patterns of moth dispersal and population differentiation within a single season, including two spatially overlapping genetic clusters. We observed subtle but significant genetic differences between resident larvae and migrant moths, supporting the hypothesis that long-distance dispersal contributes to outbreak dynamics and synchrony. These insights enhance our understanding of SBW population dynamics and suggest that effective management strategies, such as the Early Intervention Strategy (EIS), must account for the role of dispersal in mitigating the detrimental effects of major outbreaks.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17832\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17832\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17832","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Assigning Phenologically Asynchronous Moths to Source Populations Using Individual Genotypes.
The spruce budworm (Choristoneura fumiferana; SBW) is a periodically outbreaking forest insect pest that affects the boreal forests of North America through extensive defoliation and tree mortality. Causes of widespread spatial synchrony of SBW outbreaks remain a key question in the ecology and management of this species. While the Moran effect (correlated favourable environmental conditions) and density-dependent dispersal (from epicentres of demographic explosions) have been proposed and supported as drivers of synchronised outbreaks, the relative contribution of long-distance dispersal is still poorly understood. In this study, we use a novel approach to distinguish resident from migrant moths and to assign migrants to likely source clusters with the goal of better characterising regional dispersal. First, we characterise the genetic diversity and structure of resident SBW larvae and three phenologically separated groups of moths over one flight season using Genotyping-by-Sequencing. Then, using a novel machine learning approach, we assign putative migrants to their likely source populations. We hypothesised that migrant moths and resident larvae would be genetically distinct and could be assigned to source populations. Our findings revealed complex patterns of moth dispersal and population differentiation within a single season, including two spatially overlapping genetic clusters. We observed subtle but significant genetic differences between resident larvae and migrant moths, supporting the hypothesis that long-distance dispersal contributes to outbreak dynamics and synchrony. These insights enhance our understanding of SBW population dynamics and suggest that effective management strategies, such as the Early Intervention Strategy (EIS), must account for the role of dispersal in mitigating the detrimental effects of major outbreaks.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms