Stefanie von Felten, Chiara Vanetta, Christoph M. Rüegger, Sven Wellmann, Leonhard Held
{"title":"随机对照试验中被死亡截断的结果:幸存者平均因果效应的模拟研究","authors":"Stefanie von Felten, Chiara Vanetta, Christoph M. Rüegger, Sven Wellmann, Leonhard Held","doi":"10.1002/bimj.70061","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Continuous outcome measurements truncated by death present a challenge for the estimation of unbiased treatment effects in randomized controlled trials (RCTs). One way to deal with such situations is to estimate the survivor average causal effect (SACE), but this requires making nontestable assumptions. Motivated by an ongoing RCT in very preterm infants with intraventricular hemorrhage, we performed a simulation study to compare an SACE estimator with complete case analysis (CCA) and analysis after multiple imputation of missing outcomes. We set up nine scenarios combining positive, negative, and no treatment effect on the outcome (cognitive development) and on survival at 2 years of age. Treatment effect estimates from all methods were compared in terms of bias, mean squared error, and coverage with regard to two true treatment effects: the treatment effect on the outcome used in the simulation and the SACE, which was derived by simulation of both potential outcomes per patient. Despite targeting different estimands (principal stratum estimand, hypothetical estimand), the SACE-estimator and multiple imputation gave similar estimates of the treatment effect and efficiently reduced the bias compared to CCA. Also, both methods were relatively robust to omission of one covariate in the analysis, and thus violation of relevant assumptions. Although the SACE is not without controversy, we find it useful if mortality is inherent to the study population. Some degree of violation of the required assumptions is almost certain, but may be acceptable in practice.</p></div>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outcomes Truncated by Death in RCTs: A Simulation Study on the Survivor Average Causal Effect\",\"authors\":\"Stefanie von Felten, Chiara Vanetta, Christoph M. Rüegger, Sven Wellmann, Leonhard Held\",\"doi\":\"10.1002/bimj.70061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Continuous outcome measurements truncated by death present a challenge for the estimation of unbiased treatment effects in randomized controlled trials (RCTs). One way to deal with such situations is to estimate the survivor average causal effect (SACE), but this requires making nontestable assumptions. Motivated by an ongoing RCT in very preterm infants with intraventricular hemorrhage, we performed a simulation study to compare an SACE estimator with complete case analysis (CCA) and analysis after multiple imputation of missing outcomes. We set up nine scenarios combining positive, negative, and no treatment effect on the outcome (cognitive development) and on survival at 2 years of age. Treatment effect estimates from all methods were compared in terms of bias, mean squared error, and coverage with regard to two true treatment effects: the treatment effect on the outcome used in the simulation and the SACE, which was derived by simulation of both potential outcomes per patient. Despite targeting different estimands (principal stratum estimand, hypothetical estimand), the SACE-estimator and multiple imputation gave similar estimates of the treatment effect and efficiently reduced the bias compared to CCA. Also, both methods were relatively robust to omission of one covariate in the analysis, and thus violation of relevant assumptions. Although the SACE is not without controversy, we find it useful if mortality is inherent to the study population. Some degree of violation of the required assumptions is almost certain, but may be acceptable in practice.</p></div>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"67 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70061\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70061","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Outcomes Truncated by Death in RCTs: A Simulation Study on the Survivor Average Causal Effect
Continuous outcome measurements truncated by death present a challenge for the estimation of unbiased treatment effects in randomized controlled trials (RCTs). One way to deal with such situations is to estimate the survivor average causal effect (SACE), but this requires making nontestable assumptions. Motivated by an ongoing RCT in very preterm infants with intraventricular hemorrhage, we performed a simulation study to compare an SACE estimator with complete case analysis (CCA) and analysis after multiple imputation of missing outcomes. We set up nine scenarios combining positive, negative, and no treatment effect on the outcome (cognitive development) and on survival at 2 years of age. Treatment effect estimates from all methods were compared in terms of bias, mean squared error, and coverage with regard to two true treatment effects: the treatment effect on the outcome used in the simulation and the SACE, which was derived by simulation of both potential outcomes per patient. Despite targeting different estimands (principal stratum estimand, hypothetical estimand), the SACE-estimator and multiple imputation gave similar estimates of the treatment effect and efficiently reduced the bias compared to CCA. Also, both methods were relatively robust to omission of one covariate in the analysis, and thus violation of relevant assumptions. Although the SACE is not without controversy, we find it useful if mortality is inherent to the study population. Some degree of violation of the required assumptions is almost certain, but may be acceptable in practice.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.