探索人工智能在精密光子学中的作用——以基于深度神经网络的激光脉冲参数估计为例

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jose R. Paredes-Miguel, Miroslava Cano-Lara, Andres A. Garcia-Granada, Andres Espinal, Marcos J. Villaseñor-Aguilar, Leonardo Martinez-Jimenez, Horacio Rostro-Gonzalez
{"title":"探索人工智能在精密光子学中的作用——以基于深度神经网络的激光脉冲参数估计为例","authors":"Jose R. Paredes-Miguel,&nbsp;Miroslava Cano-Lara,&nbsp;Andres A. Garcia-Granada,&nbsp;Andres Espinal,&nbsp;Marcos J. Villaseñor-Aguilar,&nbsp;Leonardo Martinez-Jimenez,&nbsp;Horacio Rostro-Gonzalez","doi":"10.1002/adpr.202400113","DOIUrl":null,"url":null,"abstract":"<p>Ultrafast pulsed laser technology presents unique challenges and opportunities in material processing and characterization for precision photonics. Herein, an experiment is conducted involving the use of an ultrafast pulsed laser to irradiate a molybdenum film, inducing oxide formation. A total of 54 experiments are performed, varying the laser irradiation time and per-pulse laser fluence, resulting in a database with diverse oxide formations on the material. This dataset is further expanded numerically through interpolation to 187 samples. Subsequently, eight different deep neural network models, each with varying hidden layers and numbers of neurons, are employed to characterize the laser behavior with different parameters. These models are then validated numerically using three different learning rates, and the results are statistically evaluated using three metrics: mean squared error, mean absolute error, and <i>R</i><sup>2</sup> score.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"6 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400113","citationCount":"0","resultStr":"{\"title\":\"Exploring the Role of Artificial Intelligence in Precision Photonics: A Case Study on Deep Neural Network-Based fs Laser Pulsed Parameter Estimation for MoOx Formation\",\"authors\":\"Jose R. Paredes-Miguel,&nbsp;Miroslava Cano-Lara,&nbsp;Andres A. Garcia-Granada,&nbsp;Andres Espinal,&nbsp;Marcos J. Villaseñor-Aguilar,&nbsp;Leonardo Martinez-Jimenez,&nbsp;Horacio Rostro-Gonzalez\",\"doi\":\"10.1002/adpr.202400113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ultrafast pulsed laser technology presents unique challenges and opportunities in material processing and characterization for precision photonics. Herein, an experiment is conducted involving the use of an ultrafast pulsed laser to irradiate a molybdenum film, inducing oxide formation. A total of 54 experiments are performed, varying the laser irradiation time and per-pulse laser fluence, resulting in a database with diverse oxide formations on the material. This dataset is further expanded numerically through interpolation to 187 samples. Subsequently, eight different deep neural network models, each with varying hidden layers and numbers of neurons, are employed to characterize the laser behavior with different parameters. These models are then validated numerically using three different learning rates, and the results are statistically evaluated using three metrics: mean squared error, mean absolute error, and <i>R</i><sup>2</sup> score.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"6 6\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400113\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超快脉冲激光技术在精密光子学的材料加工和表征方面提出了独特的挑战和机遇。本文进行了一项实验,涉及使用超快脉冲激光照射钼膜,诱导氧化物形成。总共进行了54次实验,改变了激光照射时间和每脉冲激光能量,从而建立了一个包含材料上不同氧化物形成的数据库。该数据集通过插值进一步扩展到187个样本。随后,采用8种不同的深度神经网络模型,每个模型具有不同的隐藏层和神经元数量,来表征不同参数下的激光行为。然后使用三种不同的学习率对这些模型进行数值验证,并使用三个指标对结果进行统计评估:均方误差、平均绝对误差和R2评分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring the Role of Artificial Intelligence in Precision Photonics: A Case Study on Deep Neural Network-Based fs Laser Pulsed Parameter Estimation for MoOx Formation

Exploring the Role of Artificial Intelligence in Precision Photonics: A Case Study on Deep Neural Network-Based fs Laser Pulsed Parameter Estimation for MoOx Formation

Ultrafast pulsed laser technology presents unique challenges and opportunities in material processing and characterization for precision photonics. Herein, an experiment is conducted involving the use of an ultrafast pulsed laser to irradiate a molybdenum film, inducing oxide formation. A total of 54 experiments are performed, varying the laser irradiation time and per-pulse laser fluence, resulting in a database with diverse oxide formations on the material. This dataset is further expanded numerically through interpolation to 187 samples. Subsequently, eight different deep neural network models, each with varying hidden layers and numbers of neurons, are employed to characterize the laser behavior with different parameters. These models are then validated numerically using three different learning rates, and the results are statistically evaluated using three metrics: mean squared error, mean absolute error, and R2 score.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信