Md. Mahabur Rahman, Abdulla Al Mamun, Hideto Minami, Md. Kawsar Hossain, S. Manjura Hoque, Mostafa K. Sharafat and Hasan Ahmad
{"title":"V2O5集成biochar@poly(苯胺-吡咯)杂化复合包覆石墨电极电化学响应的增强","authors":"Md. Mahabur Rahman, Abdulla Al Mamun, Hideto Minami, Md. Kawsar Hossain, S. Manjura Hoque, Mostafa K. Sharafat and Hasan Ahmad","doi":"10.1039/D5RA01022E","DOIUrl":null,"url":null,"abstract":"<p >The fabrication of sustainable electrode materials with high specific capacitance values is essential for designing energy-efficient supercapacitors. With this aim, herein, V<small><sub>2</sub></small>O<small><sub>5</sub></small>-integrated biochar@poly(aniline–pyrrole), named the BC@CCp@V<small><sub>2</sub></small>O<small><sub>5</sub></small> hybrid composite, is evaluated as an electrode material. First, biochar (BC) is prepared <em>via</em> a simple hydrothermal treatment of sucrose solution. Then, conducting poly(aniline–pyrrole) (CCp) is incorporated <em>via</em> a seeded chemical oxidation method to yield BC@CCp composite particles. Finally, the BC@CCp composite is thoroughly blended with calcined V<small><sub>2</sub></small>O<small><sub>5</sub></small> at a composite to V<small><sub>2</sub></small>O<small><sub>5</sub></small> (w/w) ratio of 4 : 1. The morphology and surface composition of the BC@CCp@V<small><sub>2</sub></small>O<small><sub>5</sub></small> hybrid composite are analyzed and confirmed <em>via</em> electron microscopy and various spectral analyses. The electrochemical properties of BC@CCp, calcined V<small><sub>2</sub></small>O<small><sub>5</sub></small> and the BC@CCp@V<small><sub>2</sub></small>O<small><sub>5</sub></small>-coated graphite electrode are measured and compared. According to galvanostatic charge discharge (GCD) measurements, the BC@CCp@V<small><sub>2</sub></small>O<small><sub>5</sub></small>-coated electrode shows an exceptionally high capacitance value of 4150.6 F g<small><sup>−1</sup></small> at a current density of 1.0 A g<small><sup>−1</sup></small>. The BC@CCp@V<small><sub>2</sub></small>O<small><sub>5</sub></small>-coated electrode also demonstrates excellent capacitance retention (134%) at 10.0 A g<small><sup>−1</sup></small> after 1000 charge–discharge cycles. This significant enhancement in the capacitance and stability is achieved owing to the combination of the individual components' properties and the synergistic interplay between calcined V<small><sub>2</sub></small>O<small><sub>5</sub></small> and the active centers of BC@CCp. These observations represent a significant advancement in the design of sustainable BC@CCp@V<small><sub>2</sub></small>O<small><sub>5</sub></small> electrode materials for application in energy-efficient supercapacitor devices.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 25","pages":" 19966-19981"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01022e?page=search","citationCount":"0","resultStr":"{\"title\":\"Enhancement of the electrochemical response of a V2O5 integrated biochar@poly(aniline–pyrrole) hybrid composite-coated graphite electrode\",\"authors\":\"Md. Mahabur Rahman, Abdulla Al Mamun, Hideto Minami, Md. Kawsar Hossain, S. Manjura Hoque, Mostafa K. Sharafat and Hasan Ahmad\",\"doi\":\"10.1039/D5RA01022E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The fabrication of sustainable electrode materials with high specific capacitance values is essential for designing energy-efficient supercapacitors. With this aim, herein, V<small><sub>2</sub></small>O<small><sub>5</sub></small>-integrated biochar@poly(aniline–pyrrole), named the BC@CCp@V<small><sub>2</sub></small>O<small><sub>5</sub></small> hybrid composite, is evaluated as an electrode material. First, biochar (BC) is prepared <em>via</em> a simple hydrothermal treatment of sucrose solution. Then, conducting poly(aniline–pyrrole) (CCp) is incorporated <em>via</em> a seeded chemical oxidation method to yield BC@CCp composite particles. Finally, the BC@CCp composite is thoroughly blended with calcined V<small><sub>2</sub></small>O<small><sub>5</sub></small> at a composite to V<small><sub>2</sub></small>O<small><sub>5</sub></small> (w/w) ratio of 4 : 1. The morphology and surface composition of the BC@CCp@V<small><sub>2</sub></small>O<small><sub>5</sub></small> hybrid composite are analyzed and confirmed <em>via</em> electron microscopy and various spectral analyses. The electrochemical properties of BC@CCp, calcined V<small><sub>2</sub></small>O<small><sub>5</sub></small> and the BC@CCp@V<small><sub>2</sub></small>O<small><sub>5</sub></small>-coated graphite electrode are measured and compared. According to galvanostatic charge discharge (GCD) measurements, the BC@CCp@V<small><sub>2</sub></small>O<small><sub>5</sub></small>-coated electrode shows an exceptionally high capacitance value of 4150.6 F g<small><sup>−1</sup></small> at a current density of 1.0 A g<small><sup>−1</sup></small>. The BC@CCp@V<small><sub>2</sub></small>O<small><sub>5</sub></small>-coated electrode also demonstrates excellent capacitance retention (134%) at 10.0 A g<small><sup>−1</sup></small> after 1000 charge–discharge cycles. This significant enhancement in the capacitance and stability is achieved owing to the combination of the individual components' properties and the synergistic interplay between calcined V<small><sub>2</sub></small>O<small><sub>5</sub></small> and the active centers of BC@CCp. These observations represent a significant advancement in the design of sustainable BC@CCp@V<small><sub>2</sub></small>O<small><sub>5</sub></small> electrode materials for application in energy-efficient supercapacitor devices.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 25\",\"pages\":\" 19966-19981\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01022e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01022e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01022e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
制造具有高比电容值的可持续电极材料是设计节能超级电容器的关键。为此,本文对v2o5集成biochar@poly(苯胺-吡咯),即BC@CCp@V2O5杂化复合材料作为电极材料进行了评价。首先,通过简单的水热处理蔗糖溶液制备生物炭(BC)。然后,通过种子化学氧化法掺入导电聚苯胺吡咯(CCp),得到BC@CCp复合颗粒。最后,将BC@CCp复合材料与煅烧的V2O5充分混合,复合材料与V2O5 (w/w)比为4:1。通过电子显微镜和各种光谱分析,对BC@CCp@V2O5杂化复合材料的形貌和表面组成进行了分析和证实。对BC@CCp、煅烧V2O5和BC@CCp@V2O5包覆石墨电极的电化学性能进行了测试和比较。根据恒流充放电(GCD)测量,BC@CCp@ v2o5涂层电极在电流密度为1.0 a g−1时显示出异常高的电容值4150.6 F g−1。在1000次充放电循环后,BC@CCp@ v2o5涂层电极在10.0 A g−1下也表现出优异的电容保持率(134%)。这种电容和稳定性的显著提高是由于各个组分的性质和煅烧V2O5与BC@CCp活性中心之间的协同相互作用的结合。这些观察结果代表了可持续BC@CCp@V2O5电极材料设计的重大进步,可用于节能超级电容器器件。
Enhancement of the electrochemical response of a V2O5 integrated biochar@poly(aniline–pyrrole) hybrid composite-coated graphite electrode
The fabrication of sustainable electrode materials with high specific capacitance values is essential for designing energy-efficient supercapacitors. With this aim, herein, V2O5-integrated biochar@poly(aniline–pyrrole), named the BC@CCp@V2O5 hybrid composite, is evaluated as an electrode material. First, biochar (BC) is prepared via a simple hydrothermal treatment of sucrose solution. Then, conducting poly(aniline–pyrrole) (CCp) is incorporated via a seeded chemical oxidation method to yield BC@CCp composite particles. Finally, the BC@CCp composite is thoroughly blended with calcined V2O5 at a composite to V2O5 (w/w) ratio of 4 : 1. The morphology and surface composition of the BC@CCp@V2O5 hybrid composite are analyzed and confirmed via electron microscopy and various spectral analyses. The electrochemical properties of BC@CCp, calcined V2O5 and the BC@CCp@V2O5-coated graphite electrode are measured and compared. According to galvanostatic charge discharge (GCD) measurements, the BC@CCp@V2O5-coated electrode shows an exceptionally high capacitance value of 4150.6 F g−1 at a current density of 1.0 A g−1. The BC@CCp@V2O5-coated electrode also demonstrates excellent capacitance retention (134%) at 10.0 A g−1 after 1000 charge–discharge cycles. This significant enhancement in the capacitance and stability is achieved owing to the combination of the individual components' properties and the synergistic interplay between calcined V2O5 and the active centers of BC@CCp. These observations represent a significant advancement in the design of sustainable BC@CCp@V2O5 electrode materials for application in energy-efficient supercapacitor devices.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.