通过烧结温度†定制纳米板- zno压敏电阻的形态和电性能

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-06-12 DOI:10.1039/D5RA01534K
Huy Nguyen Trung, Trang Nguyen Van, Kieu Anh Vo Thi, Hong Cao Thi, Xuyen Nguyen Thi, Tuan Anh Nguyen, Tuan Anh Nguyen, Lam Tran Dai, Chinh Tran Van, Duy Lai Van, Duong La Duc and Tham Do Quang
{"title":"通过烧结温度†定制纳米板- zno压敏电阻的形态和电性能","authors":"Huy Nguyen Trung, Trang Nguyen Van, Kieu Anh Vo Thi, Hong Cao Thi, Xuyen Nguyen Thi, Tuan Anh Nguyen, Tuan Anh Nguyen, Lam Tran Dai, Chinh Tran Van, Duy Lai Van, Duong La Duc and Tham Do Quang","doi":"10.1039/D5RA01534K","DOIUrl":null,"url":null,"abstract":"<p >In this study, ZnO nanoplates (crystallite size: 100 nm, thickness: 15 nm) were synthesized <em>via</em> a hydrothermal route. Varistors were then fabricated using these ZnO nanoplates incorporated with five oxide dopants (Bi<small><sub>2</sub></small>O<small><sub>3</sub></small>, Sb<small><sub>2</sub></small>O<small><sub>3</sub></small>, MnO<small><sub>2</sub></small>, Co<small><sub>3</sub></small>O<small><sub>4</sub></small>, and Cr<small><sub>2</sub></small>O<small><sub>3</sub></small>) and sintered at 1000, 1100, and 1200 °C. A control varistor sample using micro-sized ZnO was also prepared. The effects of sintering temperature on the structural, mechanical, and electrical properties of ZnO-based varistors were systematically studied. Increasing the sintering temperature from 1000 °C to 1200 °C enlarged the grain size (1.7–6.8 μm), enhanced hardness (200–280 HV), and resulted in 17–19% shrinkage. At 1100 °C, the varistor achieved a balance of high nonlinearity (<em>α</em> = 48.5), low leakage current (<em>J</em><small><sub>L</sub></small> = 9.7 μA cm<small><sup>−2</sup></small>), and high breakdown threshold (<em>E</em><small><sub>b</sub></small> = 689 V mm<small><sup>−1</sup></small>). Impedance analysis showed a resistive–capacitive transition at higher frequencies, while grain boundary resistivity at low frequencies (10<small><sup>6.5</sup></small>–10<small><sup>8</sup></small> Ω m) aligned with DC resistivity at the low applied electric fields. These results highlight the advantages of ZnO nanoplates in enhancing the electrical performance of varistors, making them promising for high-voltage applications.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 25","pages":" 20006-20019"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01534k?page=search","citationCount":"0","resultStr":"{\"title\":\"Tailoring morphological and electrical properties of nanoplate-ZnO varistors via sintering temperature†\",\"authors\":\"Huy Nguyen Trung, Trang Nguyen Van, Kieu Anh Vo Thi, Hong Cao Thi, Xuyen Nguyen Thi, Tuan Anh Nguyen, Tuan Anh Nguyen, Lam Tran Dai, Chinh Tran Van, Duy Lai Van, Duong La Duc and Tham Do Quang\",\"doi\":\"10.1039/D5RA01534K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, ZnO nanoplates (crystallite size: 100 nm, thickness: 15 nm) were synthesized <em>via</em> a hydrothermal route. Varistors were then fabricated using these ZnO nanoplates incorporated with five oxide dopants (Bi<small><sub>2</sub></small>O<small><sub>3</sub></small>, Sb<small><sub>2</sub></small>O<small><sub>3</sub></small>, MnO<small><sub>2</sub></small>, Co<small><sub>3</sub></small>O<small><sub>4</sub></small>, and Cr<small><sub>2</sub></small>O<small><sub>3</sub></small>) and sintered at 1000, 1100, and 1200 °C. A control varistor sample using micro-sized ZnO was also prepared. The effects of sintering temperature on the structural, mechanical, and electrical properties of ZnO-based varistors were systematically studied. Increasing the sintering temperature from 1000 °C to 1200 °C enlarged the grain size (1.7–6.8 μm), enhanced hardness (200–280 HV), and resulted in 17–19% shrinkage. At 1100 °C, the varistor achieved a balance of high nonlinearity (<em>α</em> = 48.5), low leakage current (<em>J</em><small><sub>L</sub></small> = 9.7 μA cm<small><sup>−2</sup></small>), and high breakdown threshold (<em>E</em><small><sub>b</sub></small> = 689 V mm<small><sup>−1</sup></small>). Impedance analysis showed a resistive–capacitive transition at higher frequencies, while grain boundary resistivity at low frequencies (10<small><sup>6.5</sup></small>–10<small><sup>8</sup></small> Ω m) aligned with DC resistivity at the low applied electric fields. These results highlight the advantages of ZnO nanoplates in enhancing the electrical performance of varistors, making them promising for high-voltage applications.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 25\",\"pages\":\" 20006-20019\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01534k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01534k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01534k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用水热法合成了晶粒尺寸为100 nm,厚度为15 nm的ZnO纳米板。然后将这些ZnO纳米片与五种氧化物掺杂剂(Bi2O3, Sb2O3, MnO2, Co3O4和Cr2O3)结合,并在1000,1100和1200℃下烧结制成压敏电阻。同时还制备了一种采用微细氧化锌作为对照的压敏电阻样品。系统地研究了烧结温度对zno基压敏电阻器结构、力学和电性能的影响。烧结温度从1000℃提高到1200℃,晶粒尺寸增大(1.7 ~ 6.8 μm),硬度提高(200 ~ 280 HV),收缩率达到17 ~ 19%。在1100℃时,该压敏电阻达到了高非线性(α = 48.5)、低漏电流(JL = 9.7 μA cm−2)和高击穿阈值(Eb = 689 V mm−1)的平衡。阻抗分析表明,高频时晶界电阻率(106.5 ~ 108 Ω m)与低外加电场下的直流电阻率一致。这些结果突出了ZnO纳米板在提高压敏电阻器电性能方面的优势,使其在高压应用中具有前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailoring morphological and electrical properties of nanoplate-ZnO varistors via sintering temperature†

Tailoring morphological and electrical properties of nanoplate-ZnO varistors via sintering temperature†

In this study, ZnO nanoplates (crystallite size: 100 nm, thickness: 15 nm) were synthesized via a hydrothermal route. Varistors were then fabricated using these ZnO nanoplates incorporated with five oxide dopants (Bi2O3, Sb2O3, MnO2, Co3O4, and Cr2O3) and sintered at 1000, 1100, and 1200 °C. A control varistor sample using micro-sized ZnO was also prepared. The effects of sintering temperature on the structural, mechanical, and electrical properties of ZnO-based varistors were systematically studied. Increasing the sintering temperature from 1000 °C to 1200 °C enlarged the grain size (1.7–6.8 μm), enhanced hardness (200–280 HV), and resulted in 17–19% shrinkage. At 1100 °C, the varistor achieved a balance of high nonlinearity (α = 48.5), low leakage current (JL = 9.7 μA cm−2), and high breakdown threshold (Eb = 689 V mm−1). Impedance analysis showed a resistive–capacitive transition at higher frequencies, while grain boundary resistivity at low frequencies (106.5–108 Ω m) aligned with DC resistivity at the low applied electric fields. These results highlight the advantages of ZnO nanoplates in enhancing the electrical performance of varistors, making them promising for high-voltage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信