一种基于视觉变压器的工业无线网络物理层认证方法

IF 4.4 3区 计算机科学 Q2 TELECOMMUNICATIONS
Lei Zhang;Meng Zheng;Bin Feng;Wei Liang;Lianbo Ma
{"title":"一种基于视觉变压器的工业无线网络物理层认证方法","authors":"Lei Zhang;Meng Zheng;Bin Feng;Wei Liang;Lianbo Ma","doi":"10.1109/LCOMM.2025.3564572","DOIUrl":null,"url":null,"abstract":"In this letter, we propose a Vision Transformer-based Physical Layer Authentication (ViT-PLA) method for industrial wireless networks. To this end, Channel Frequency Response (CFR) samples are organized in dual-channel CFR images, which together with request positions encompass necessary information on the spatial-temporal correlation between CFR samples. Further, we design a novel Deep Neural Network (DNN) model consisting of a ViT and two feedforward neural networks to learn from the well-designed training samples. The implementation of the trained DNN model for online authentication is also discussed. Finally, the effectiveness and the generalizability of ViT-PLA are demonstrated on real industrial datasets.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 6","pages":"1421-1425"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ViT-PLA: A Vision Transformer-Based Physical Layer Authentication Method for Industrial Wireless Networks\",\"authors\":\"Lei Zhang;Meng Zheng;Bin Feng;Wei Liang;Lianbo Ma\",\"doi\":\"10.1109/LCOMM.2025.3564572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we propose a Vision Transformer-based Physical Layer Authentication (ViT-PLA) method for industrial wireless networks. To this end, Channel Frequency Response (CFR) samples are organized in dual-channel CFR images, which together with request positions encompass necessary information on the spatial-temporal correlation between CFR samples. Further, we design a novel Deep Neural Network (DNN) model consisting of a ViT and two feedforward neural networks to learn from the well-designed training samples. The implementation of the trained DNN model for online authentication is also discussed. Finally, the effectiveness and the generalizability of ViT-PLA are demonstrated on real industrial datasets.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 6\",\"pages\":\"1421-1425\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10977838/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10977838/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们提出了一种基于视觉变压器的工业无线网络物理层认证(ViT-PLA)方法。为此,通道频率响应(CFR)样本被组织在双通道CFR图像中,该图像与请求位置一起包含了CFR样本之间时空相关性的必要信息。此外,我们设计了一个新的深度神经网络(DNN)模型,该模型由一个ViT和两个前馈神经网络组成,从精心设计的训练样本中学习。本文还讨论了训练后的DNN在线认证模型的实现。最后,在实际工业数据集上验证了viti - pla的有效性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ViT-PLA: A Vision Transformer-Based Physical Layer Authentication Method for Industrial Wireless Networks
In this letter, we propose a Vision Transformer-based Physical Layer Authentication (ViT-PLA) method for industrial wireless networks. To this end, Channel Frequency Response (CFR) samples are organized in dual-channel CFR images, which together with request positions encompass necessary information on the spatial-temporal correlation between CFR samples. Further, we design a novel Deep Neural Network (DNN) model consisting of a ViT and two feedforward neural networks to learn from the well-designed training samples. The implementation of the trained DNN model for online authentication is also discussed. Finally, the effectiveness and the generalizability of ViT-PLA are demonstrated on real industrial datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信